Finite Automata Part Two

Outline for Today

- Recap from Last Time
- Where are we, again?
- Designing a DFA
- How to think about finite memory.
- Regular Languages
- A fundamental class of languages.
- NFAs
- Automata with Magic Superpowers.
- Designing NFAs
- Harnessing an awesome power.

Recap from Last Time

Formal Language Theory

- An alphabet is a set, usually denoted Σ, consisting of elements called characters.
- $a \in \Sigma$ means " a is a single character."
- A string over Σ is a finite sequence of zero or more characters taken from Σ.
- The empty string has no characters and is denoted ε.
- A language over $\boldsymbol{\Sigma}$ is a set of strings over Σ.
- The language Σ^{*} is the set of all strings over Σ.
- $w \in \Sigma^{*}$ means " w is a string of characters from Σ."

The Language of an Automaton

- If A is an automaton that processes strings over Σ, the language of A, denoted $\mathscr{L}(\mathbf{A})$, is the set of all strings A accepts.
- Formally:

$$
\mathscr{L}(A)=\left\{w \in \Sigma^{*} \mid A \text { accepts } w\right\}
$$

DFAs

- A DFA is a
- Deterministic
- Finite
- Automaton
- DFAs are the simplest type of automaton that we will see in this course.

DFAs

- A DFA is defined relative to some alphabet Σ.
- For each state in the DFA, there must be exactly one transition defined for each symbol in Σ.
- This is the "deterministic" part of DFA.
- There is a unique start state.
- There are zero or more accepting states.

New Stuff!

Recognizing Languages with DFAs

$L=\left\{w \in\{\mathbf{a}, \mathbf{b}\}^{*} \mid w\right.$ contains aa as a substring $\}$

Recognizing Languages with DFAs
 $L=\left\{w \in\{\mathrm{a}, \mathrm{b}\}^{*} \mid w\right.$ contains aa as a substring $\}$

Recognizing Languages with DFAs
 $L=\left\{w \in\{\mathrm{a}, \mathrm{b}\}^{*} \mid w\right.$ contains aa as a substring $\}$

Recognizing Languages with DFAs
 $L=\left\{w \in\{\mathrm{a}, \mathrm{b}\}^{*} \mid w\right.$ contains aa as a substring $\}$

Recognizing Languages with DFAs
 $L=\left\{w \in\{\mathrm{a}, \mathrm{b}\}^{*} \mid w\right.$ contains aa as a substring $\}$

Recognizing Languages with DFAs
 $L=\left\{w \in\{\mathrm{a}, \mathrm{b}\}^{*} \mid w\right.$ contains aa as a substring $\}$

Recognizing Languages with DFAs
 $L=\left\{w \in\{\mathrm{a}, \mathrm{b}\}^{*} \mid w\right.$ contains aa as a substring $\}$

Are we done?
Answer at
https://cs103.stanford.edu/pollev

Recognizing Languages with DFAs
 $L=\left\{w \in\{\mathrm{a}, \mathrm{b}\}^{*} \mid w\right.$ contains aa as a substring $\}$

Recognizing Languages with DFAs
 $L=\left\{w \in\{\mathrm{a}, \mathrm{b}\}^{*} \mid w\right.$ contains aa as a substring $\}$

Recognizing Languages with DFAs
 $L=\left\{w \in\{\mathrm{a}, \mathrm{b}\}^{*} \mid w\right.$ contains aa as a substring $\}$

Recognizing Languages with DFAs
 $L=\left\{w \in\{\mathrm{a}, \mathrm{b}\}^{*} \mid w\right.$ contains aa as a substring $\}$

Recognizing Languages with DFAs
 $L=\left\{w \in\{\mathrm{a}, \mathrm{b}\}^{*} \mid w\right.$ contains aa as a substring $\}$

Tabular DFAs

Tabular DFAs

Tabular DFAs

Tabular DFAs

Tabular DFAs

Tabular DFAs

Tabular DFAs

My Turn to Code Things Up!

```
int kTransitionTable[kNumStates][kNumSymbols] = {
    {0, 0, 1, 3, 7, 1, ...},
};
bool kAcceptTable[kNumStates] = {
    false,
    true,
    true,
};
bool doesAccept(string input) {
    int state = 0;
    for (char ch: input) {
        state = kTransitionTable[state][ch];
    }
    return kAcceptTable[state];
}
```


The Regular Languages

A language L is called a regular language if there exists a DFA D such that $\mathscr{L}(D)=L$.
If L is a language and $\mathscr{L}(D)=L$, we say that D recognizes the language L.

The Complement of a Language

- Given a language $L \subseteq \Sigma^{*}$, the complement of that language (denoted $\overline{\boldsymbol{L}}$) is the language of all strings in Σ^{*} that aren't in L.
- Formally:

$$
\bar{L}=\Sigma^{*}-L
$$

The Complement of a Language

- Given a language $L \subseteq \Sigma^{*}$, the complement of that language (denoted $\overline{\boldsymbol{L}}$) is the language of all strings in Σ^{*} that aren't in L.
- Formally:

$$
\bar{L}=\Sigma^{*}-L
$$

The Complement of a Language

- Given a language $L \subseteq \Sigma^{*}$, the complement of that language (denoted $\overline{\boldsymbol{L}}$) is the language of all strings in Σ^{*} that aren't in L.
- Formally:

$$
\bar{L}=\Sigma^{*}-L
$$

The Complement of a Language

- Given a language $L \subseteq \Sigma^{*}$, the complement of that language (denoted $\overline{\boldsymbol{L}}$) is the language of all strings in Σ^{*} that aren't in L.
- Formally:

$$
\bar{L}=\Sigma^{*}-L
$$

The Complement of a Language

- Given a language $L \subseteq \Sigma^{*}$, the complement of that language (denoted $\overline{\boldsymbol{L}}$) is the language of all strings in Σ^{*} that aren't in L.
- Formally:

$$
\bar{L}=\Sigma^{*}-L
$$

Complementing Regular Languages

$L=\left\{w \in\{\mathbf{a}, \mathbf{b}\}^{*} \mid w\right.$ contains aa as a substring $\}$

$\bar{L}=\left\{w \in\{\mathbf{a}, \mathbf{b}\}^{*} \mid w\right.$ does not contain aa as a substring $\}$

How do we turn the DFA above into a DFA for \bar{L} ?

Answer at
 https://cs103.stanford.edu/pollev

Complementing Regular Languages

$$
L=\left\{w \in\{\mathbf{a}, \mathbf{b}\}^{*} \mid w \text { contains aa as a substring }\right\}
$$

$\bar{L}=\left\{w \in\{\mathbf{a}, \mathbf{b}\}^{*} \mid w\right.$ does not contain aa as a substring $\}$

Complementing Regular Languages

$L=\left\{w \in\{\mathrm{a}, *, /\}^{*} \mid w\right.$ represents a C-style comment $\}$

Complementing Regular Languages

$$
\bar{L}=\left\{w \in\{\mathrm{a}, *, /\}^{*} \mid w\right. \text { doesn't represent a C-style }
$$ comment \}

Complementing Regular Languages

$$
\bar{L}=\left\{w \in\{\mathrm{a}, *, /\}^{*} \mid w\right. \text { doesn't represent a C-style }
$$ comment \}

Closure Properties

- Theorem: If L is a regular language, then \bar{L} is also a regular language.
- As a result, we say that the regular languages are closed under complementation.

NFAs

The Motivation

NFAs

- An NFA is a
- Nondeterministic
- Finite
- Automaton
- Structurally similar to a DFA, but represents a fundamental shift in how we'll think about computation.

(Non)determinism

- A model of computation is deterministic if at every point in the computation, there is exactly one choice that can make.
- The machine accepts if that series of choices leads to an accepting state.
- A model of computation is nondeterministic if the computing machine has a finite number of choices available to make at each point, possibly including zero.
- The machine accepts if any series of choices leads to an accepting state.
- (This sort of nondeterminism is technically called existential nondeterminism, the most philosophical-sounding term we'll introduce all quarter.)

A Simple NFA

A Simple NFA

A Simple NFA

0	1	0	1	1

A Simple NFA

0	1	0	1	1

A Simple NFA

A Simple NFA

0	1	0	1	1

A Simple NFA

0	1	0	1	1

A Simple NFA

0	1	0	1	1

A Simple NFA

0	1	0	1	1

A Simple NFA

0	1	0	1	1

A Simple NFA

0	1	0	1	1

A Simple NFA

A Simple NFA

0	1	0	1	1

A Simple NFA

A Simple NFA

0	1	0	1	1

A Simple NFA

A Simple NFA

0	1	0	1	1

A Simple NFA

0	1	0	1	1

A Simple NFA

0	1	0	1	1

A Simple NFA

0	1	0	1	1

A Simple NFA

A Simple NFA

0	1	0	1	1

A Simple NFA

0	1	0	1	1

A Simple NFA

0	1	0	1	1

A Simple NFA

0	1	0	1	1

A Simple NFA

0	1	0	1	1

A Simple NFA

0	1	0	1	1

A Simple NFA

0	1	0	1	1

A Simple NFA

A More Complex NFA

A More Complex NFA

A More Complex NFA

0	1	0	1	1

A More Complex NFA

Oh no! There's no transition defined!

0	1	0	1	1

A More Complex NFA

A More Complex NFA

0	1	0	1	1

A More Complex NFA

0	1	0	1	1

A More Complex NFA

Hello, NFA!

Tragedy in Paradise

\varnothing

$\{\varepsilon\}$

The language of an NFA is $\mathscr{L}(\mathbf{N})=\left\{\boldsymbol{w} \in \Sigma^{*} \mid N\right.$ accepts $\left.\boldsymbol{w}\right\}$.
What is the language of each NFA? (Assume $\Sigma=\{\mathrm{a}, \mathrm{b}\}$.) Answer at https://cs103.stanford.edu/pollev

ε-Transitions

- NFAs have a special type of transition called the $\boldsymbol{\varepsilon}$-transition.
- An NFA may follow any number of ε-transitions at any time without consuming any input.

ε-Transitions

- NFAs have a special type of transition called the $\boldsymbol{\varepsilon}$-transition.
- An NFA may follow any number of ε-transitions at any time without consuming any input.

ε-Transitions

- NFAs have a special type of transition called the $\boldsymbol{\varepsilon}$-transition.
- An NFA may follow any number of ε-transitions at any time without consuming any input.

ε-Transitions

- NFAs have a special type of transition called the $\boldsymbol{\varepsilon}$-transition.
- An NFA may follow any number of ε-transitions at any time without consuming any input.

ε-Transitions

- NFAs have a special type of transition called the $\boldsymbol{\varepsilon}$-transition.
- An NFA may follow any number of ε-transitions at any time without consuming any input.

ε-Transitions

- NFAs have a special type of transition called the $\boldsymbol{\varepsilon}$-transition.
- An NFA may follow any number of ε-transitions at any time without consuming any input.

ε-Transitions

- NFAs have a special type of transition called the $\boldsymbol{\varepsilon}$-transition.
- An NFA may follow any number of ε-transitions at any time without consuming any input.

ε-Transitions

- NFAs have a special type of transition called the $\boldsymbol{\varepsilon}$-transition.
- An NFA may follow any number of ε-transitions at any time without consuming any input.

ε-Transitions

- NFAs have a special type of transition called the $\boldsymbol{\varepsilon}$-transition.
- An NFA may follow any number of ε-transitions at any time without consuming any input.

ε-Transitions

- NFAs have a special type of transition called the $\boldsymbol{\varepsilon}$-transition.
- An NFA may follow any number of ε-transitions at any time without consuming any input.

ε-Transitions

- NFAs have a special type of transition called the $\boldsymbol{\varepsilon}$-transition.
- An NFA may follow any number of ε-transitions at any time without consuming any input.

ε-Transitions

- NFAs have a special type of transition called the $\boldsymbol{\varepsilon}$-transition.
- An NFA may follow any number of ε-transitions at any time without consuming any input.

ε-Transitions

- NFAs have a special type of transition called the $\boldsymbol{\varepsilon}$-transition.
- An NFA may follow any number of ε-transitions at any time without consuming any input.

ε-Transitions

- NFAs have a special type of transition called the $\boldsymbol{\varepsilon}$-transition.
- An NFA may follow any number of ε-transitions at any time without consuming any input.

ε-Transitions

- NFAs have a special type of transition called the $\boldsymbol{\varepsilon}$-transition.
- An NFA may follow any number of ε-transitions at any time without consuming any input.

ε-Transitions

- NFAs have a special type of transition called the $\boldsymbol{\varepsilon}$-transition.
- An NFA may follow any number of ε-transitions at any time without consuming any input.

b

ε-Transitions

- NFAs have a special type of transition called the $\boldsymbol{\varepsilon}$-transition.
- An NFA may follow any number of ε-transitions at any time without consuming any input.

ε-Transitions

- NFAs have a special type of transition called the $\boldsymbol{\varepsilon}$-transition.
- An NFA may follow any number of ε-transitions at any time without consuming any input.
- NFAs are not required to follow ε-transitions. It's simply another option at the machine's disposal.

NFAs

- An NFA is defined relative to some alphabet Σ.
- For each state in the NFA, there may be any number of transitions defined for each symbol in Σ, plus any number of ε-transitions.
- This is the "nondeterministic" part of NFA.
- There is a unique start state.
- There are zero or more accepting states.

DFAs

- A DFA is defined relative to some alphabet Σ.
- For each state in the DFA, there must be exactly one transition defined for each symbol in Σ. Additionally, ε-transitions are not allowed.
- This is the "deterministic" part of DFA.
- There is a unique start state.
- There are zero or more accepting states.

Intuiting Nondeterminism

- Nondeterministic machines are a serious departure from physical computers. How can we build up an intuition for them?
- There are two particularly useful frameworks for interpreting nondeterminism:
- Perfect positive guessing
- Massive parallelism

Perfect Positive Guessing

Perfect Positive Guessing

a b a b a

Perfect Positive Guessing

a b a b a

Perfect Positive Guessing

$$
\begin{array}{l|l|l|l|l}
a & b & a & b & a \\
\hline
\end{array}
$$

SETII

OFDPPROUTL

Perfect Positive Guessing

- We can view nondeterministic machines as having Magic Superpowers that enable them to guess choices that lead to an accepting state.
- If there is at least one choice that leads to an accepting state, the machine will guess it.
- If there are no choices, the machine guesses any one of the wrong guesses.
- There is no known way to physically model this intuition of nondeterminism - this is quite a departure from reality!

Massive Parallelism

a	b	a	b	a

Massive Parallelism

a	b	a	b	a

Massive Parallelism

a b a b a

Massive Parallelism

$$
\begin{array}{l|l|l|l}
a & a & b & a
\end{array}
$$

Massive Parallelism

$$
\begin{array}{l|l|l|l}
a & a & b & a
\end{array}
$$

Massive Parallelism

a	b	a	b	a

Massive Parallelism

a	b	a	b	a

Massive Parallelism

$$
\begin{array}{l|l|l|l}
\mathrm{a} & \mathrm{~b} & \mathrm{a} & \mathrm{~b}
\end{array}
$$

Massive Parallelism

$$
\begin{array}{l|l|l|l|l}
& \mathrm{b} & \mathrm{a} & \mathrm{~b} & \mathrm{a}
\end{array}
$$

Massive Parallelism

Massive Parallelism

a b a b

Massive Parallelism

Massive Parallelism

- An NFA can be thought of as a DFA that can be in many states at once.
- At each point in time, when the NFA needs to follow a transition, it tries all the options at the same time.
- (Here's a rigorous explanation about how this works; read this on your own time).
- Start off in the set of all states formed by taking the start state and including each state that can be reached by zero or more ε-transitions.
- When you read a symbol a in a set of states S :
- Form the set S^{\prime} of states that can be reached by following a single a transition from some state in S.
- Your new set of states is the set of states in S^{\prime}, plus the states reachable from S^{\prime} by following zero or more ε-transitions.

Designing NFAs

Designing NFAs

- Embrace the nondeterminism!
- Good model: Guess-and-check:
- Is there some information that you'd really like to have? Have the machine nondeterministically guess that information.
- Then, have the machine deterministically check that the choice was correct.
- The guess phase corresponds to trying lots of different options.
- The check phase corresponds to filtering out bad guesses or wrong options.

Guess-and-Check

$$
L=\left\{w \in\{0,1\}^{*} \mid w \text { ends in } 010 \text { or } 101\right\}
$$

Guess-and-Check

$$
L=\left\{w \in\{0,1\}^{*} \mid w \text { ends in } 010 \text { or } 101\right\}
$$

Guess-and-Check

$$
L=\left\{w \in\{0,1\}^{*} \mid w \text { ends in } 010 \text { or } 101\right\}
$$

Guess-and-Check

$$
L=\left\{w \in\{0,1\}^{*} \mid w \text { ends in } 010 \text { or } 101\right\}
$$

1

Guess-and-Check

$$
L=\left\{w \in\{0,1\}^{*} \mid w \text { ends in } 010 \text { or } 101\right\}
$$

Guess-and-Check

$$
L=\left\{w \in\{0,1\}^{*} \mid w \text { ends in } 010 \text { or } 101\right\}
$$

1

Guess-and-Check

$$
L=\left\{w \in\{0,1\}^{*} \mid w \text { ends in } 010 \text { or } 101\right\}
$$

1

Guess-and-Check

$$
L=\left\{w \in\{0,1\}^{*} \mid w \text { ends in } 010 \text { or } 101\right\}
$$

Guess-and-Check

$$
L=\left\{w \in\{0,1\}^{*} \mid w \text { ends in } 010 \text { or } 101\right\}
$$

Guess-and-Check

$$
L=\left\{w \in\{0,1\}^{*} \mid w \text { ends in } 010 \text { or } 101\right\}
$$

Guess-and-Check

$$
L=\left\{w \in\{0,1\}^{*} \mid w \text { ends in } 010 \text { or } 101\right\}
$$

Guess-and-Check

$$
L=\left\{w \in\{0,1\}^{*} \mid w \text { ends in } 010 \text { or } 101\right\}
$$

Guess-and-Check

$$
L=\left\{w \in\{0,1\}^{*} \mid w \text { ends in } 010 \text { or } 101\right\}
$$

Guess-and-Check

$L=\left\{w \in\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}^{*} \mid\right.$ at least one of a, b, or c is not in $\left.w\right\}$

Guess-and-Check

$L=\left\{w \in\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}^{*} \mid\right.$ at least one of a, b, or c is not in $\left.w\right\}$

Guess-and-Check

$L=\left\{w \in\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}^{*} \mid\right.$ at least one of a, b, or c is not in $\left.w\right\}$ a, b

ε

Guess-and-Check

$L=\left\{w \in\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}^{*} \mid\right.$ at least one of a, b, or c is not in $\left.w\right\}$ a, b

$\varepsilon \quad a, c$

ε

Guess-and-Check

$L=\left\{w \in\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}^{*} \mid\right.$ at least one of a, b, or c is not in $\left.w\right\}$ a, b

$\varepsilon \quad a, c$

ε

Guess-and-Check

$L=\left\{w \in\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}^{*} \mid\right.$ at least one of a, b, or c is not in $\left.w\right\}$ a, b

$\varepsilon \quad a, c$

ε

Guess-and-Check

$L=\left\{w \in\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}^{*} \mid\right.$ at least one of a, b, or c is not in $\left.w\right\}$ a, b

$\varepsilon \quad a, c$

ε

Guess-and-Check

$L=\left\{w \in\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}^{*} \mid\right.$ at least one of a, b, or c is not in $\left.w\right\}$ a, b

$\varepsilon \quad a, c$

ε

Guess-and-Check

$L=\left\{w \in\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}^{*} \mid\right.$ at least one of a, b, or c is not in $\left.w\right\}$ a, b

$\varepsilon \quad a, c$

ε

Guess-and-Check

$L=\left\{w \in\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}^{*} \mid\right.$ at least one of a, b, or c is not in $\left.w\right\}$ a, b

$\varepsilon \quad a, c$

$\boldsymbol{\varepsilon}$

Guess-and-Check

$L=\left\{w \in\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}^{*} \mid\right.$ at least one of a, b, or c is not in $\left.w\right\}$ a, b

$\varepsilon \quad a, c$

a C C a c c

हर्दाI

D5 LPPBOML

Just how powerful are NFAs?

Next Time

- The Subset Construction
- So beautiful. So elegant. So cool!
- Closure Properties of Regular Languages
- Transforming languages by transforming machines.
- The Kleene Closure
- What's the deal with the notation Σ^{*} ?

