Finite Automata Part Two

Outline for Today

- Recap from Last Time
 - Where are we, again?
- **Designing a DFA**
 - How to think about finite memory.
- Regular Languages
 - A fundamental class of languages.
- **NFAs**
 - Automata with Magic Superpowers.
- **Designing NFAs**
 - Harnessing an awesome power.

Recap from Last Time

Formal Language Theory

- An *alphabet* is a set, usually denoted Σ , consisting of elements called *characters*.
 - $a \in \Sigma$ means "a is a single character."
- A string over Σ is a finite sequence of zero or more characters taken from Σ .
- The **empty string** has no characters and is denoted ϵ .
- A **language over** Σ is a set of strings over Σ .
- The language Σ^* is the set of all strings over Σ .
 - $w \in \Sigma^*$ means "w is a string of characters from Σ ."

The Language of an Automaton

- If A is an automaton that processes strings over Σ , the *language of A*, denoted $\mathcal{L}(A)$, is the set of all strings A accepts.
- Formally:

 $\mathcal{L}(A) = \{ w \in \Sigma^* \mid A \text{ accepts } w \}$

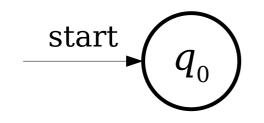
DFAs

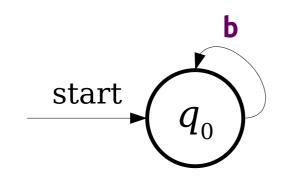
- A **DFA** is a
 - **D**eterministic
 - **F**inite
 - Automaton
- DFAs are the simplest type of automaton that we will see in this course.

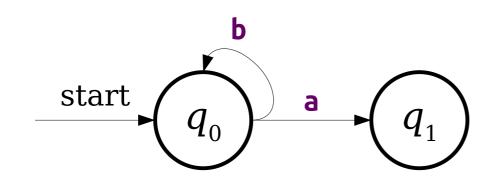
DFAs

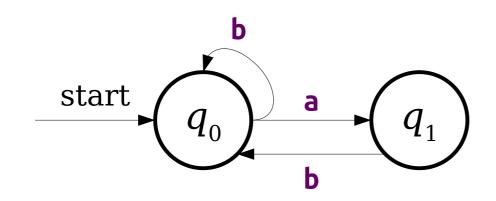
- A DFA is defined relative to some alphabet $\boldsymbol{\Sigma}.$
- For each state in the DFA, there must be $exactly \ one$ transition defined for each symbol in $\Sigma.$
 - This is the "deterministic" part of DFA.
- There is a unique start state.
- There are zero or more accepting states.

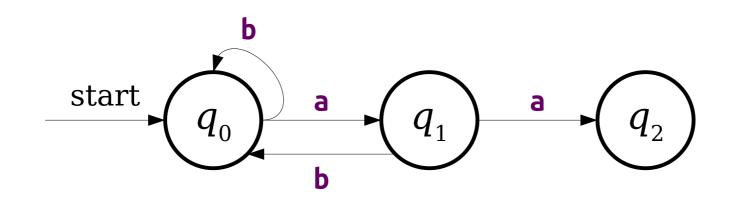
New Stuff!



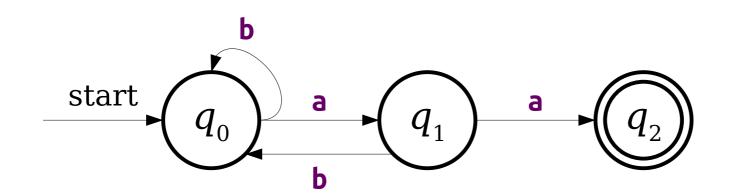




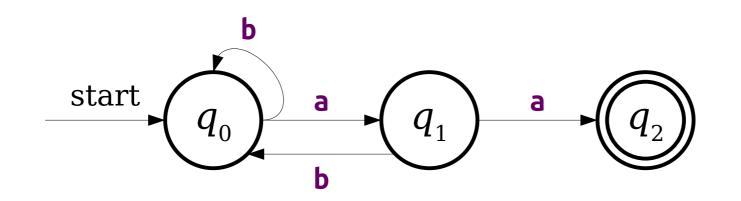


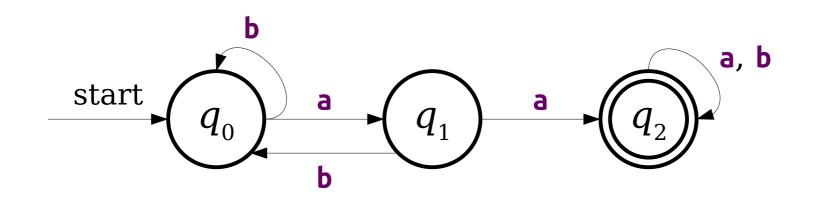


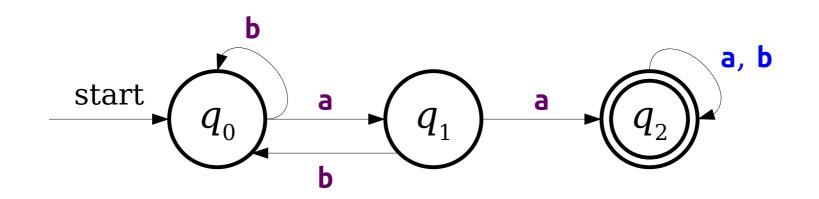
 $L = \{ w \in \{a, b\}^* \mid w \text{ contains } aa \text{ as a substring } \}$

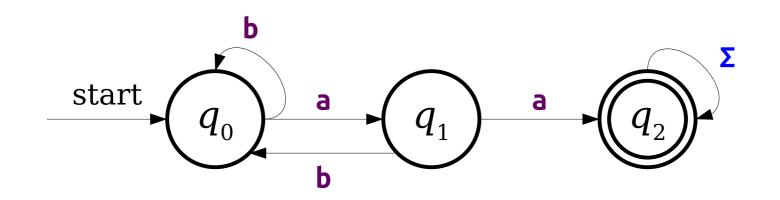


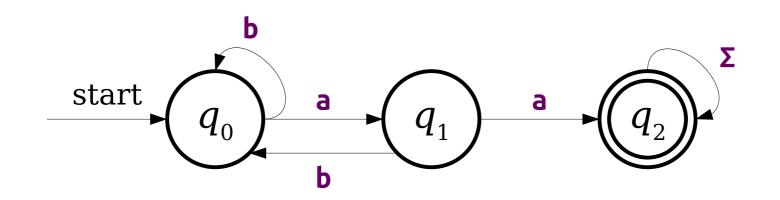
Answer at <u>https://cs103.stanford.edu/pollev</u>

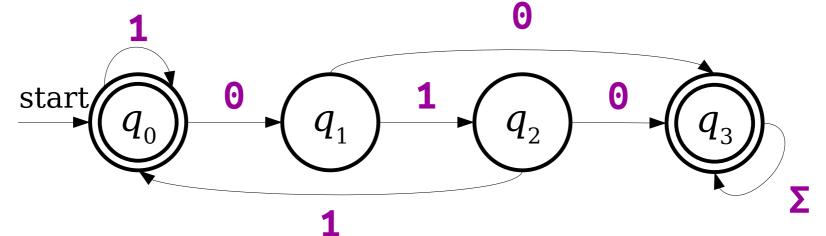




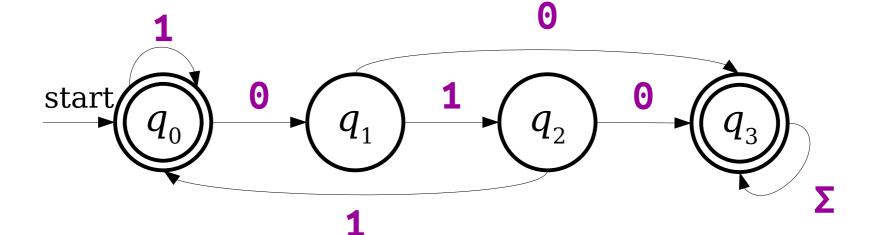




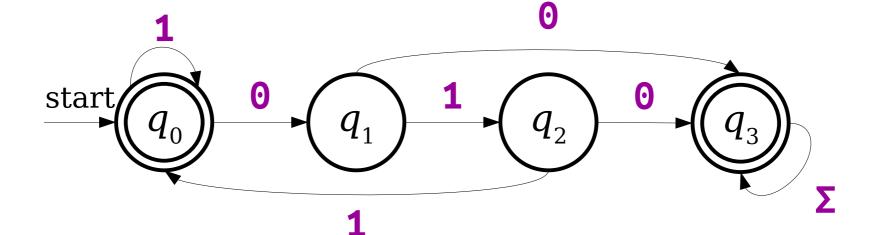




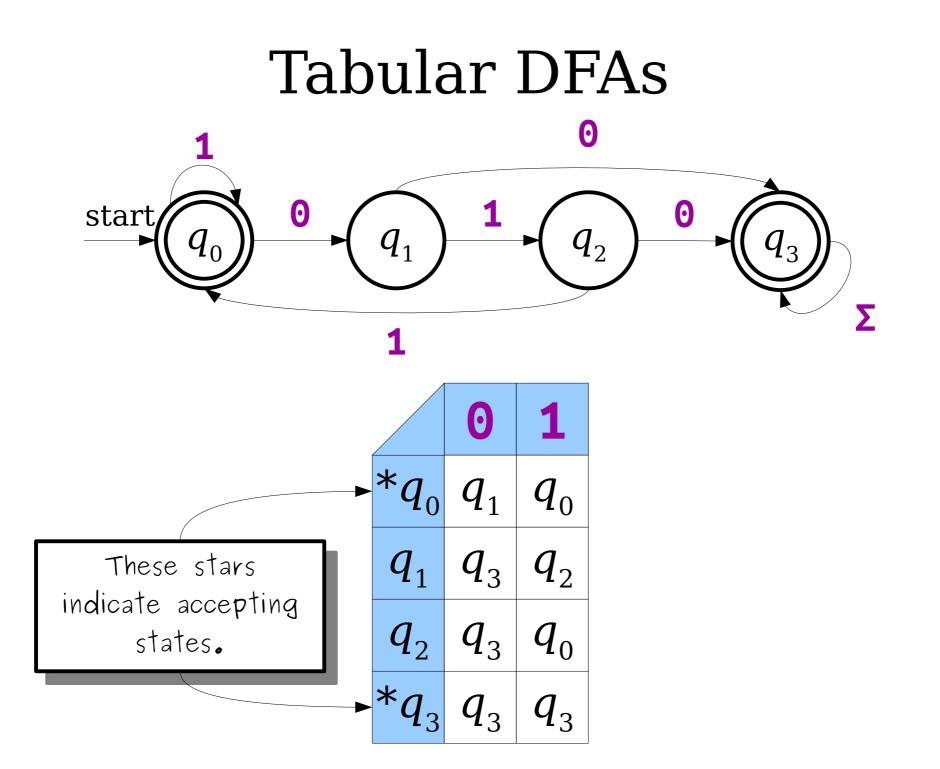
÷.,		
	0	1
\boldsymbol{q}_0		
\boldsymbol{q}_1		
q_2		
\boldsymbol{q}_3		

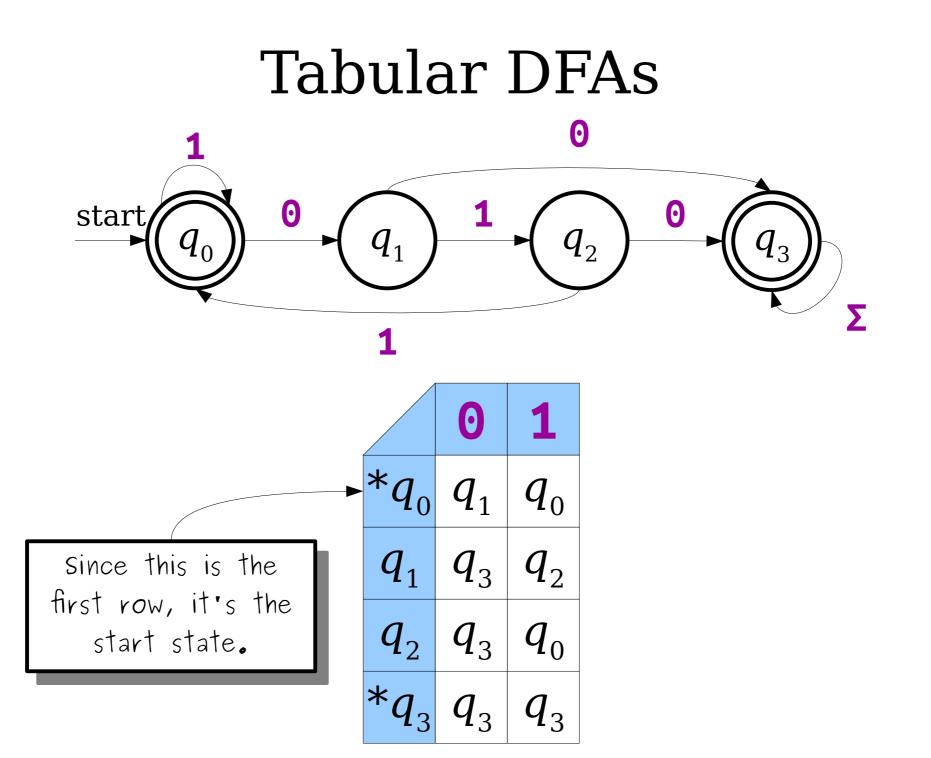


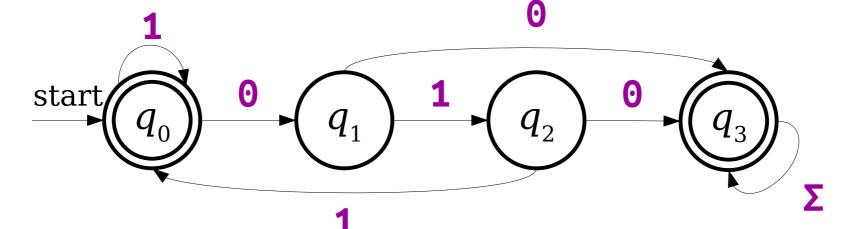
	0	1
q_{0}	\boldsymbol{q}_1	\boldsymbol{q}_0
\boldsymbol{q}_1	\boldsymbol{q}_3	\boldsymbol{q}_2
q_2	\boldsymbol{q}_3	\boldsymbol{q}_{0}
\boldsymbol{q}_3	\boldsymbol{q}_3	<i>Q</i> ₃



	0	1
$*q_{0}$	\boldsymbol{q}_1	\boldsymbol{q}_{0}
\boldsymbol{q}_1	\boldsymbol{q}_3	\boldsymbol{q}_2
\boldsymbol{q}_2	\boldsymbol{q}_3	${\pmb q}_0$
$*q_{3}$	q ₃	q_{3}







	0	1
$*q_{0}$	\boldsymbol{q}_1	\boldsymbol{q}_0
\boldsymbol{q}_1	q ₃	\boldsymbol{q}_2
\boldsymbol{q}_2	\boldsymbol{q}_3	\boldsymbol{q}_{0}
$*q_{3}$	\boldsymbol{q}_3	\boldsymbol{q}_3

Why isn't there a column here for Σ ?

Answer at <u>https://cs103.stanford.edu/pollev</u>

My Turn to Code Things Up!

```
int kTransitionTable[kNumStates][kNumSymbols] = {
     \{0, 0, 1, 3, 7, 1, ...\},\
      ...
};
bool kAcceptTable[kNumStates] = {
    false,
    true,
    true,
    ...
};
bool doesAccept(string input) {
    int state = 0;
    for (char ch: input) {
        state = kTransitionTable[state][ch];
    }
    return kAcceptTable[state];
```

The Regular Languages

A language *L* is called a **regular language** if there exists a DFA *D* such that $\mathcal{L}(D) = L$.

If L is a language and $\mathcal{L}(D) = L$, we say that D **recognizes** the language L.

- Given a language $L \subseteq \Sigma^*$, the *complement* of that language (denoted \overline{L}) is the language of all strings in Σ^* that aren't in L.
- Formally:

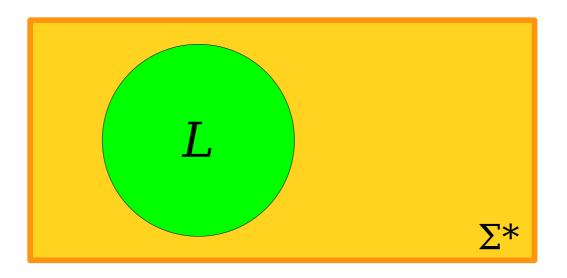
$$\overline{L} = \Sigma^* - L$$

- Given a language $L \subseteq \Sigma^*$, the *complement* of that language (denoted \overline{L}) is the language of all strings in Σ^* that aren't in L.
- Formally:

$$\overline{L} = \Sigma^* - L$$

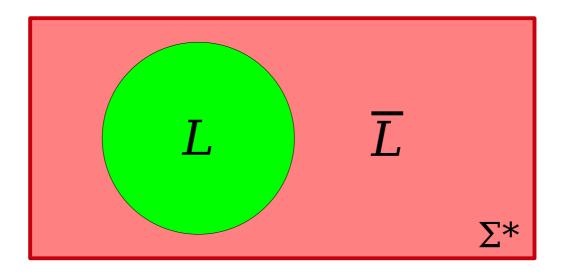
- Given a language $L \subseteq \Sigma^*$, the *complement* of that language (denoted \overline{L}) is the language of all strings in Σ^* that aren't in L.
- Formally:

$$\overline{L} = \Sigma^* - L$$



- Given a language $L \subseteq \Sigma^*$, the *complement* of that language (denoted \overline{L}) is the language of all strings in Σ^* that aren't in L.
- Formally:

$$\overline{L} = \Sigma^* - L$$

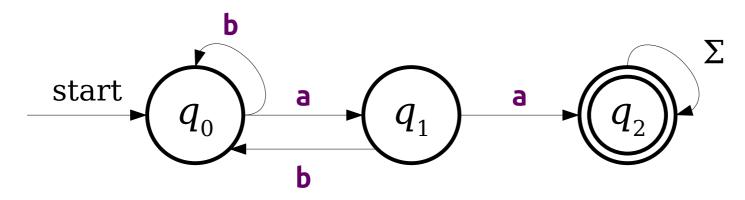


- Given a language $L \subseteq \Sigma^*$, the *complement* of that language (denoted \overline{L}) is the language of all strings in Σ^* that aren't in L.
- Formally:

$$\overline{L} = \Sigma^* - L$$
Good proofwriting
exercise: prove $\overline{L} = L$
for any language L.
 Σ^*

Complementing Regular Languages

 $L = \{ w \in \{a, b\}^* \mid w \text{ contains } aa \text{ as a substring } \}$



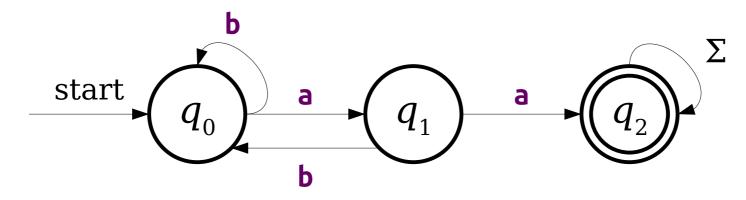
 $\overline{L} = \{ w \in \{a, b\}^* \mid w \text{ does not contain aa as a substring } \}$

How do we turn the DFA above into a DFA for \overline{L} ?

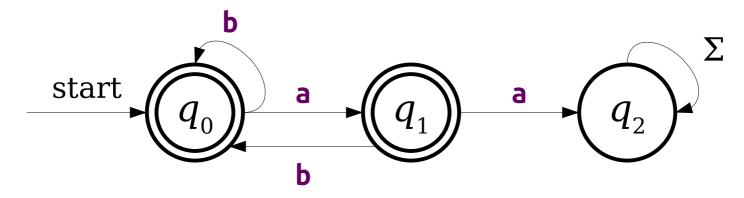
Answer at https://cs103.stanford.edu/pollev

Complementing Regular Languages

 $L = \{ w \in \{a, b\}^* \mid w \text{ contains } aa \text{ as a substring } \}$

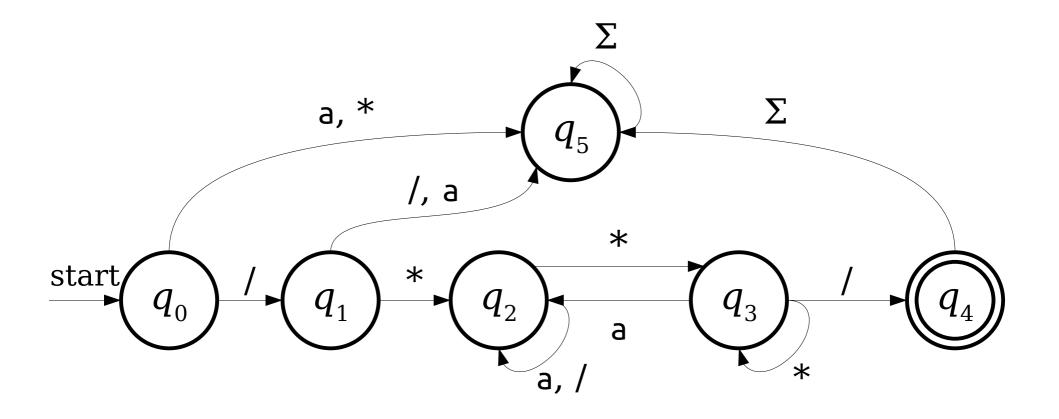


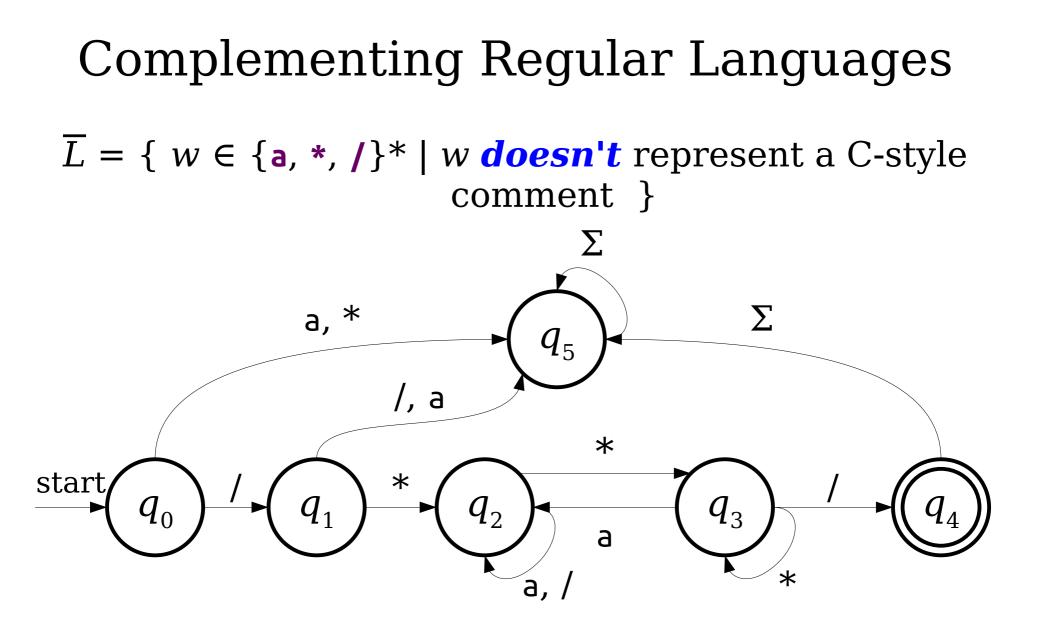
 $\overline{L} = \{ w \in \{a, b\}^* \mid w \text{ does not } contain aa as a substring \}$

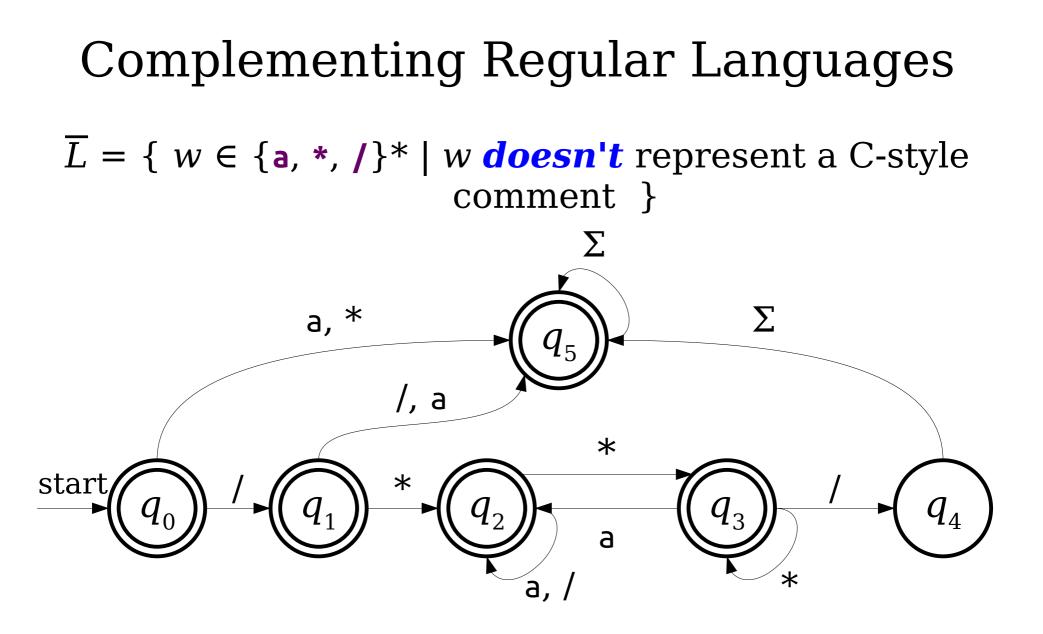


Complementing Regular Languages

 $L = \{ w \in \{a, *, /\} \}$ | w represents a C-style comment }

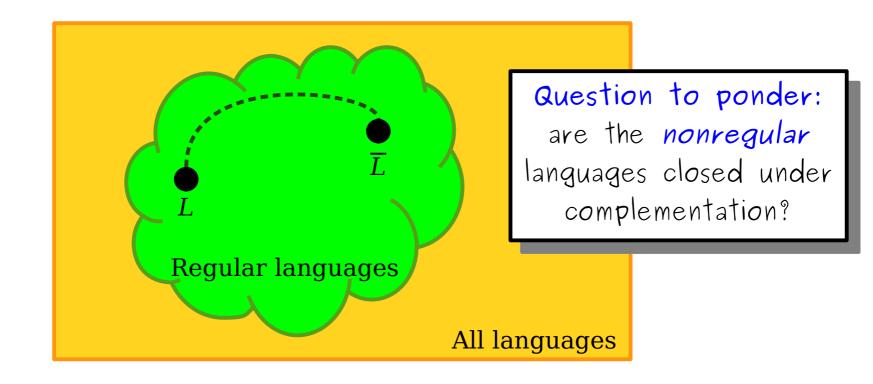






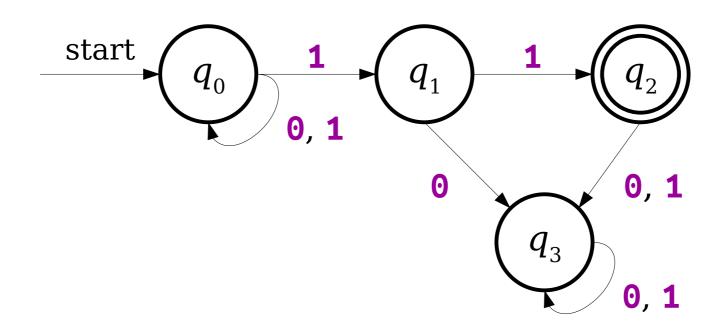
Closure Properties

- **Theorem:** If L is a regular language, then \overline{L} is also a regular language.
- As a result, we say that the regular languages are *closed under complementation*.



NFAS

The Motivation

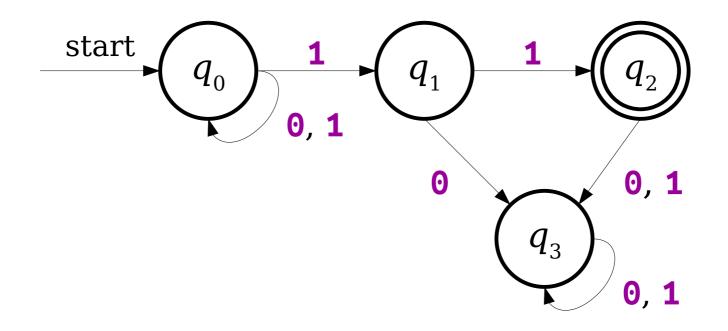


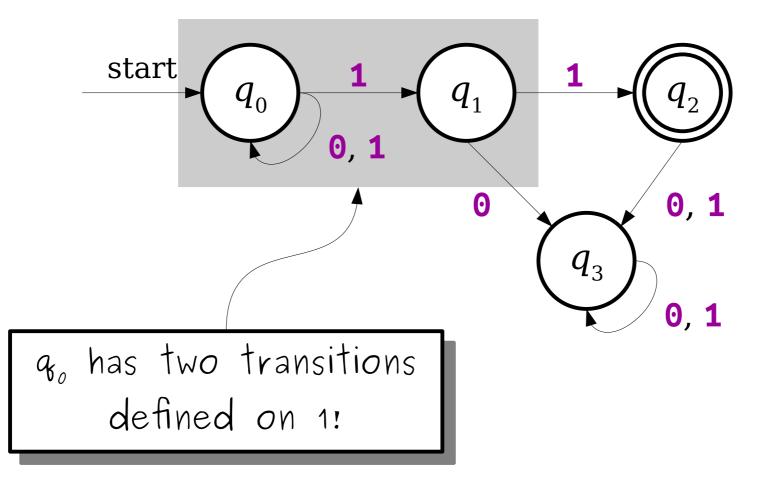
NFAs

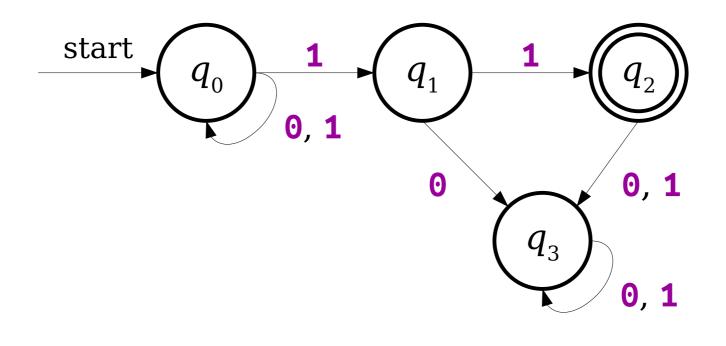
- An **NFA** is a
 - Nondeterministic
 - **F**inite
 - Automaton
- Structurally similar to a DFA, but represents a fundamental shift in how we'll think about computation.

(Non)determinism

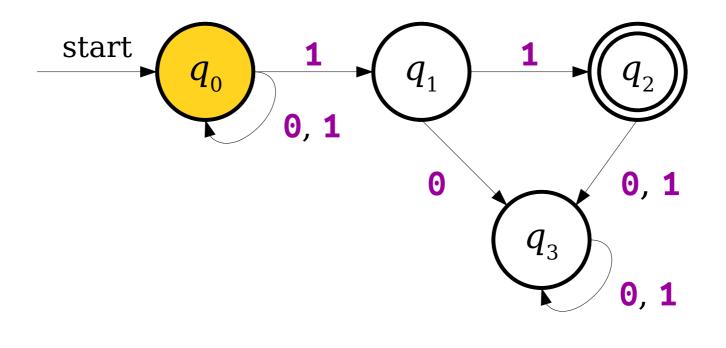
- A model of computation is *deterministic* if at every point in the computation, there is exactly one choice that can make.
 - The machine accepts if that series of choices leads to an accepting state.
- A model of computation is *nondeterministic* if the computing machine has a finite number of choices available to make at each point, possibly including zero.
- The machine accepts if *any* series of choices leads to an accepting state.
 - (This sort of nondeterminism is technically called *existential nondeterminism*, the most philosophical-sounding term we'll introduce all quarter.)



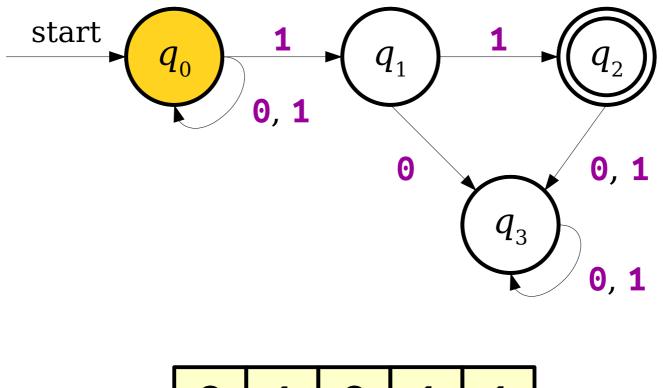


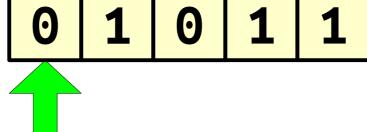


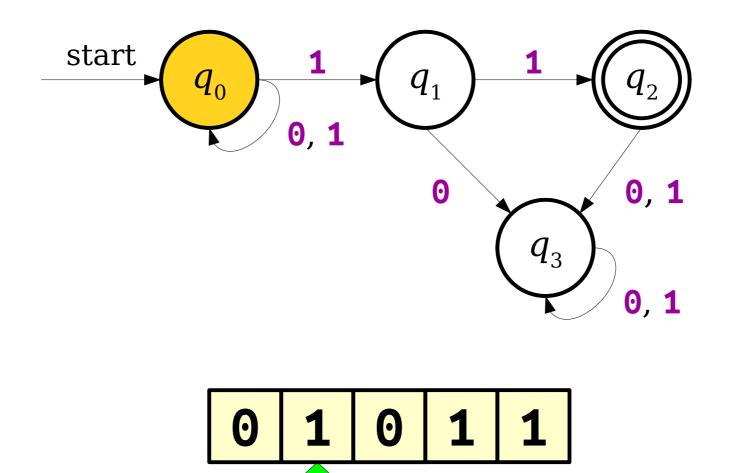
01	0	1	1
----	---	---	---

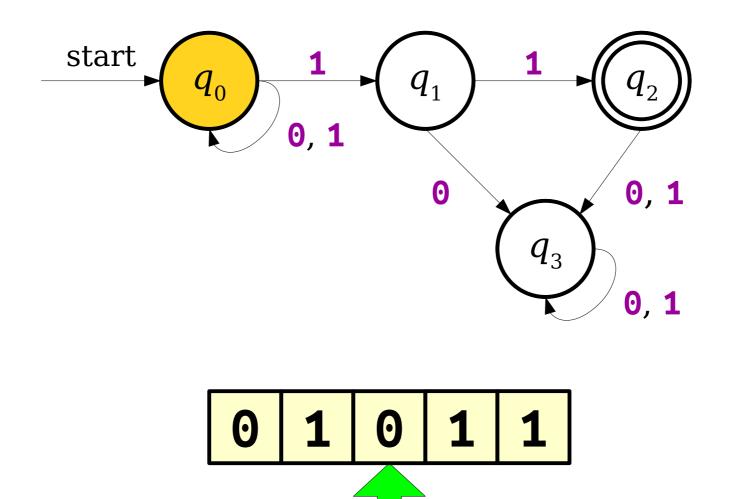


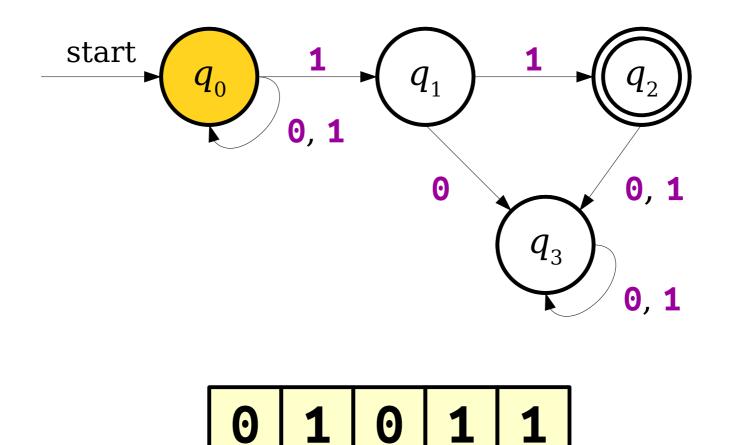
01	0	1	1
----	---	---	---

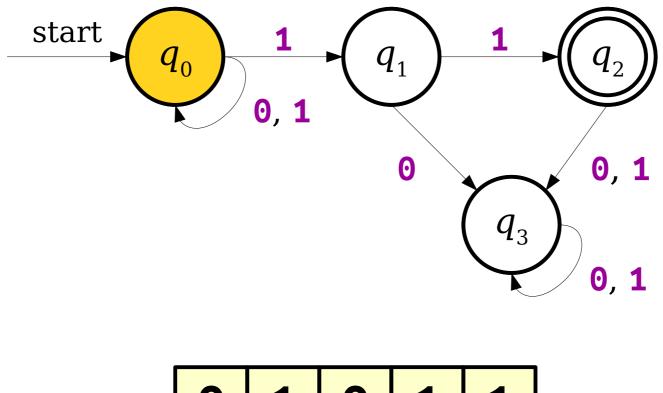


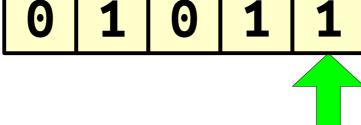


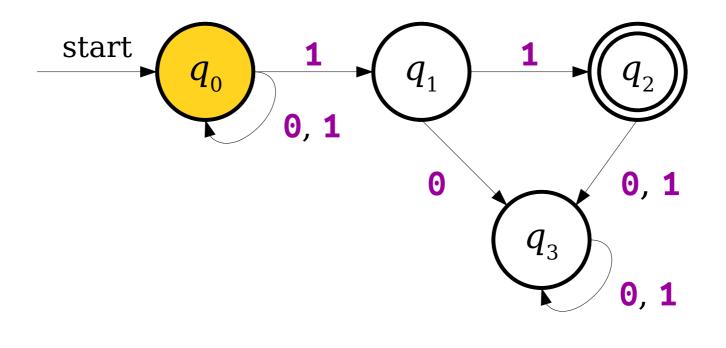




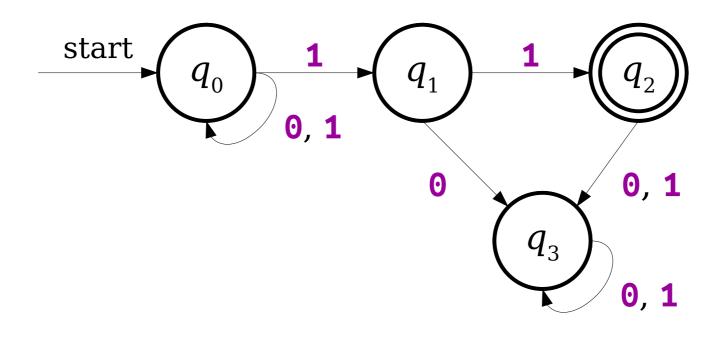




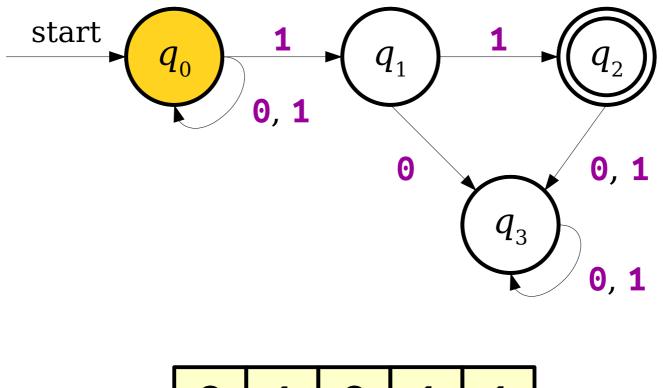


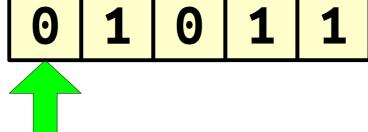


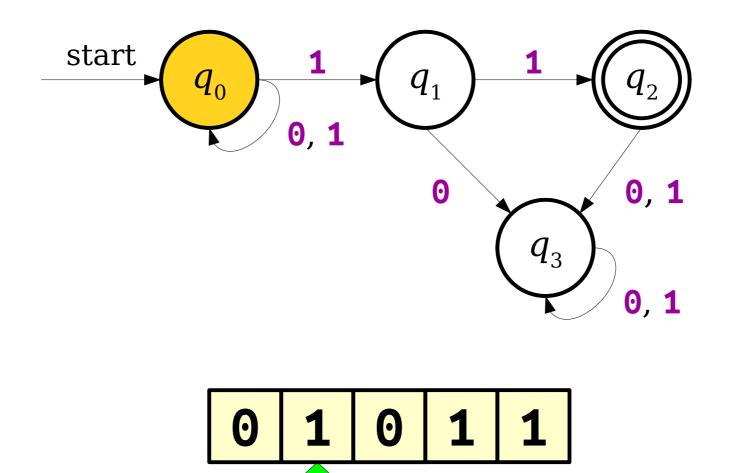
01	0	1	1
----	---	---	---

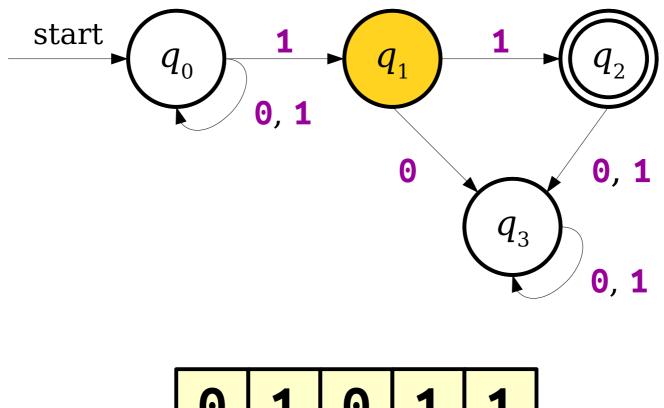


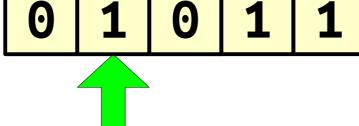
0 1	0	1	1
-----	---	---	---

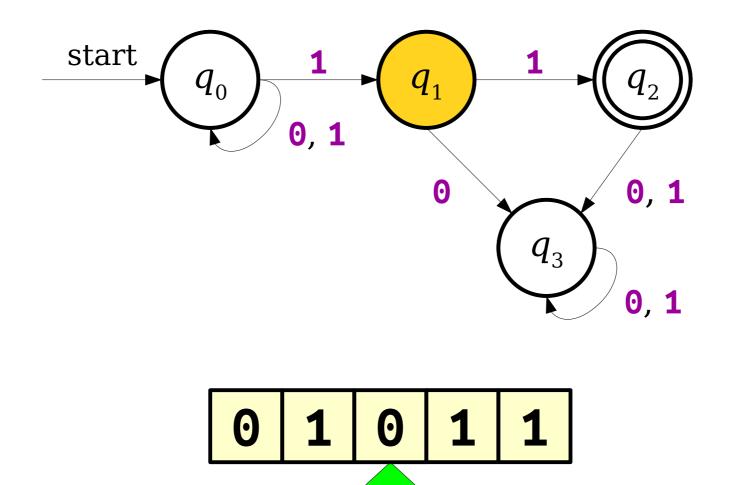


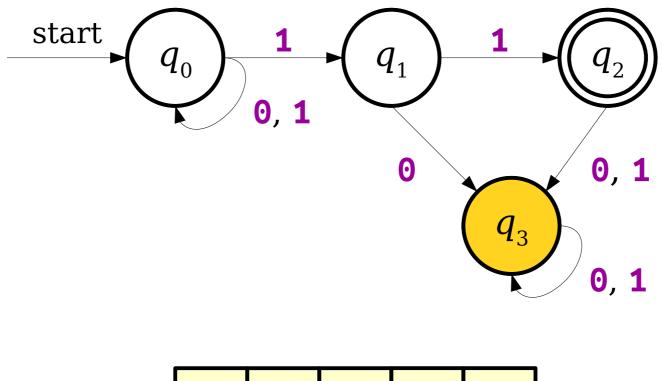


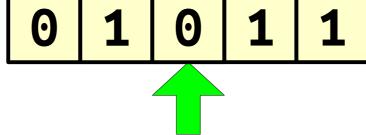


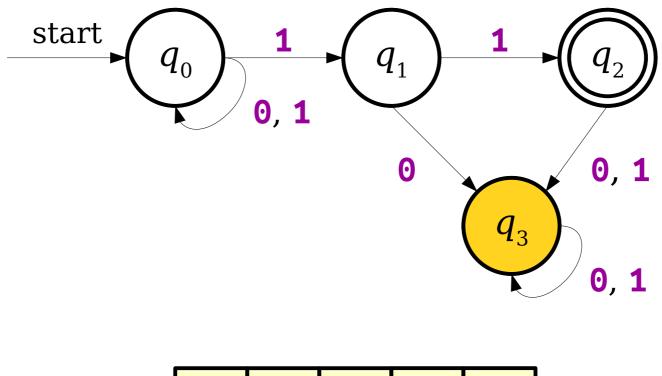


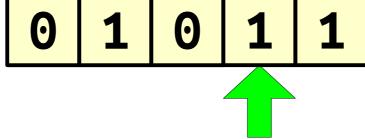


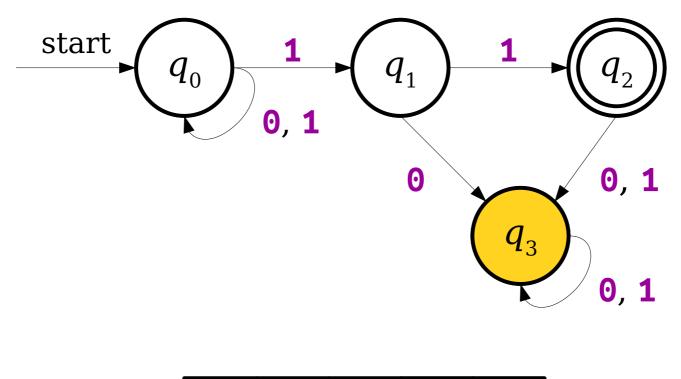


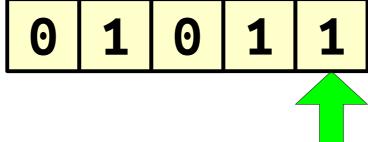


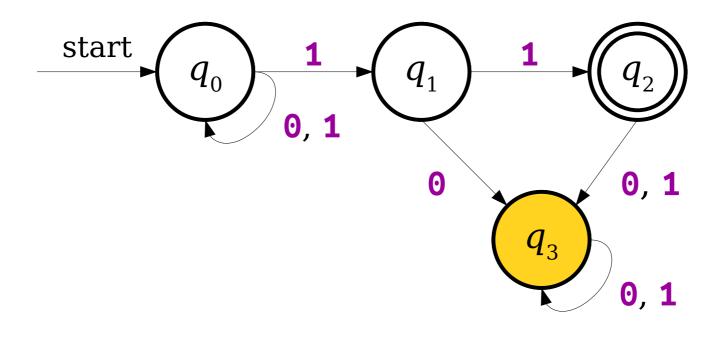




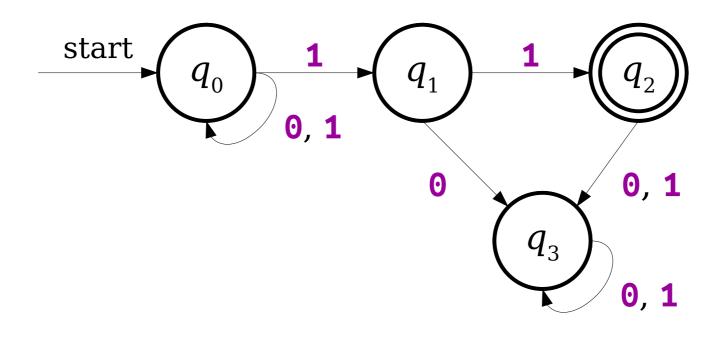




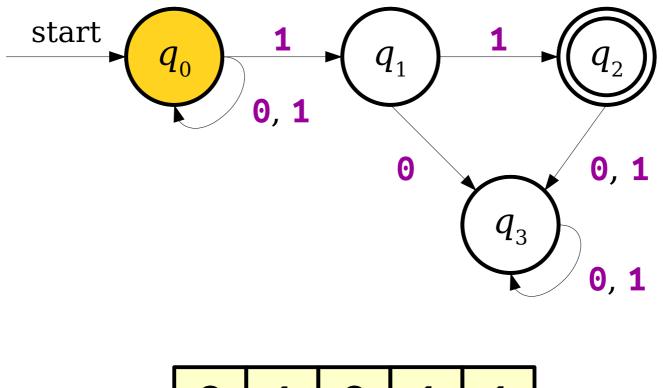


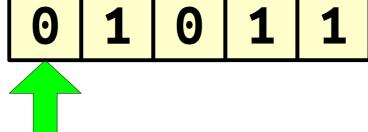


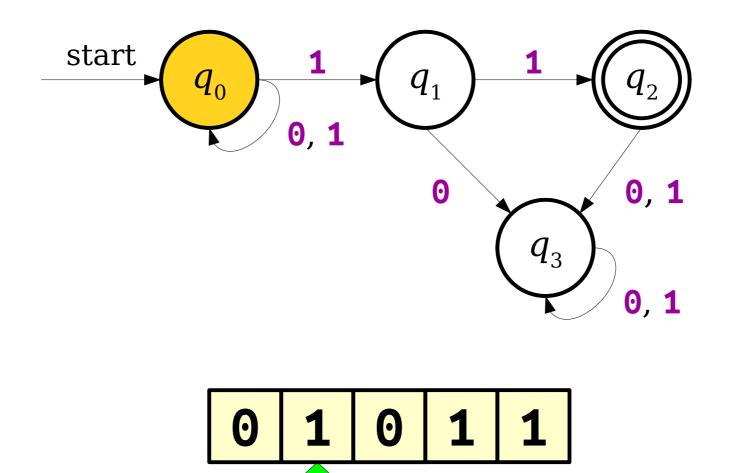
01	0	1	1
----	---	---	---

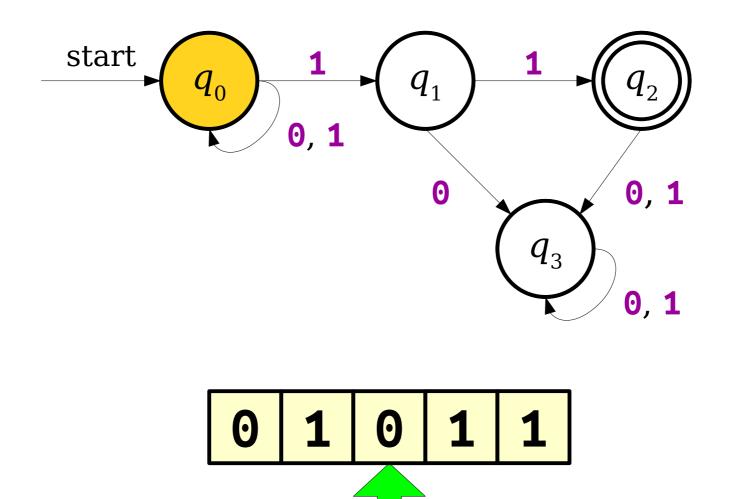


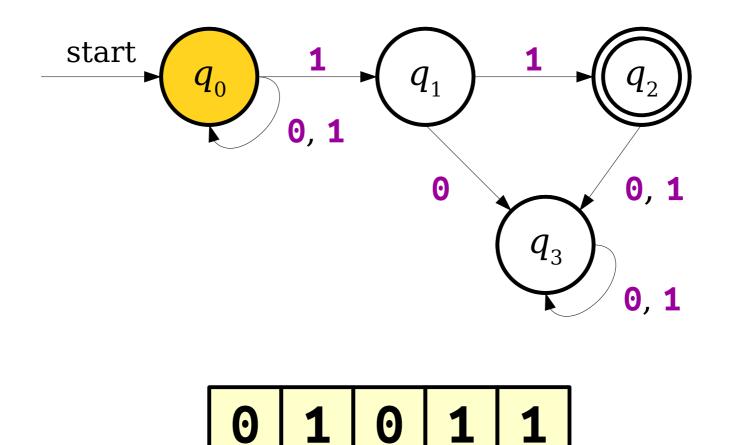
0 1	0	1	1
-----	---	---	---

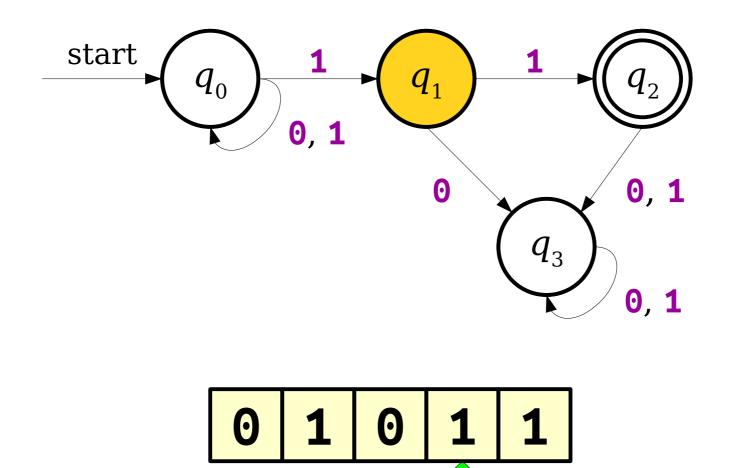


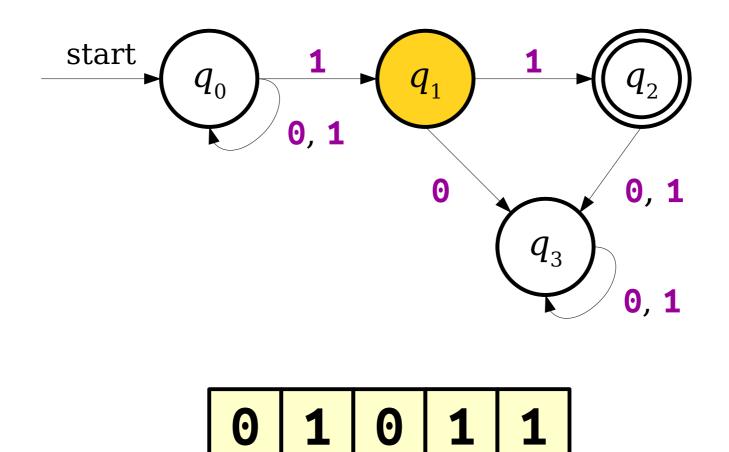


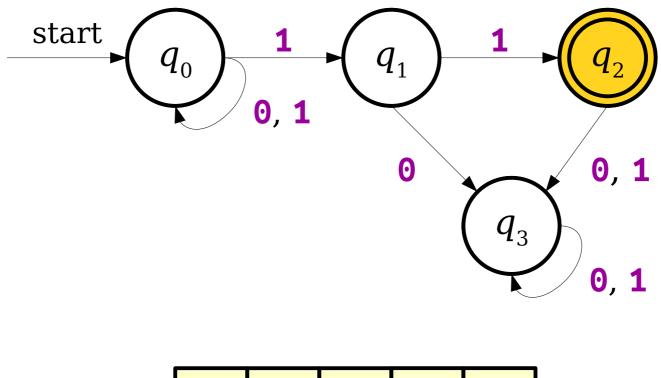


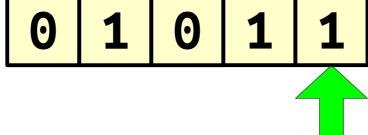




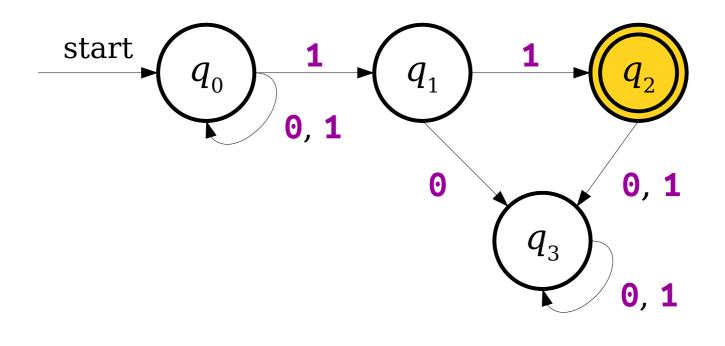






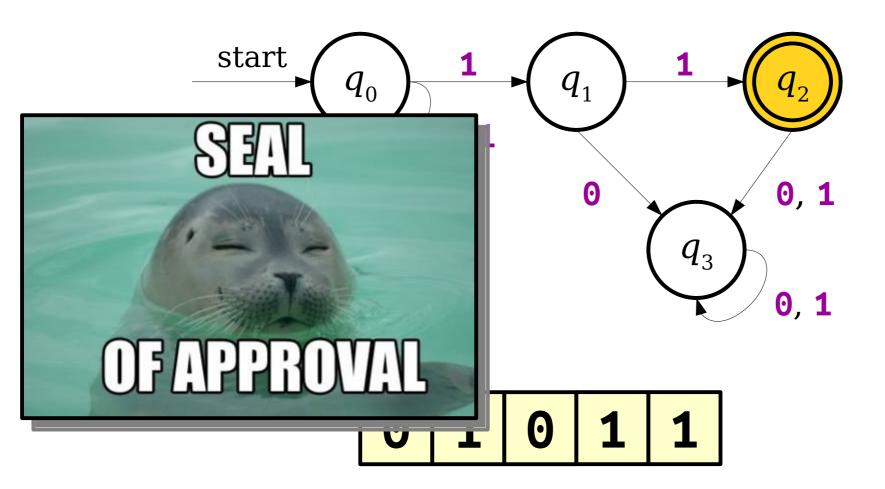


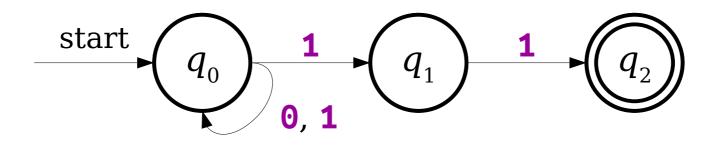
A Simple NFA

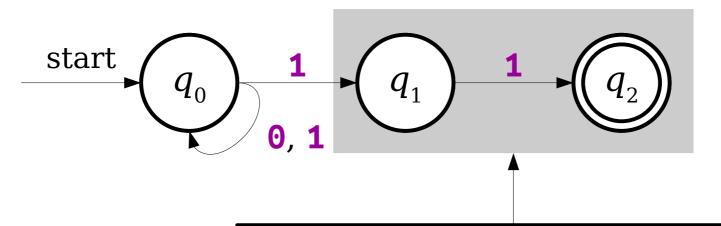


0 1	0	1	1
-----	---	---	---

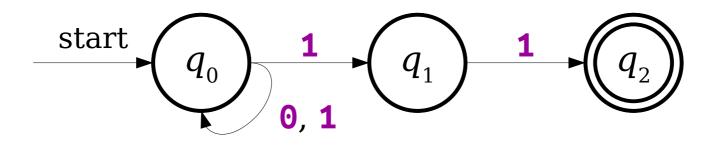
A Simple NFA

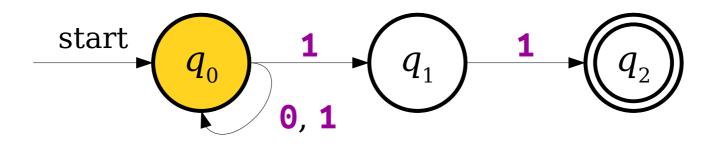


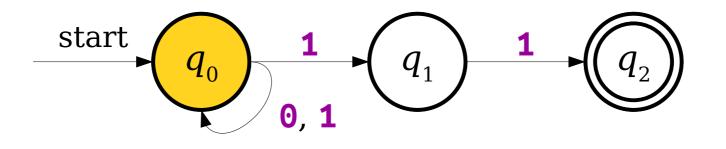


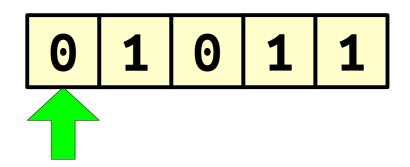


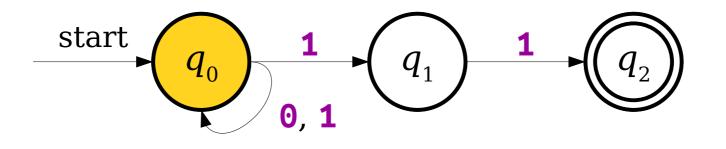
If a NFA needs to make a transition when no transition exists, the automaton dies and that particular path does not accept.

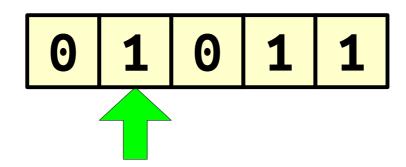


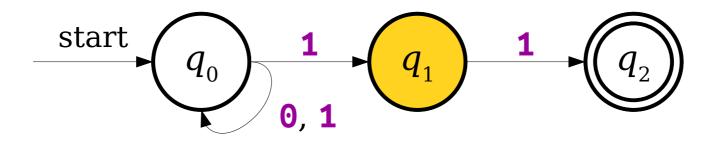


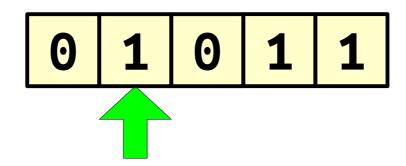


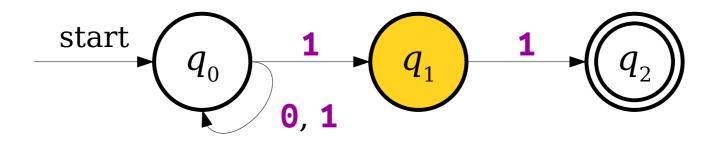


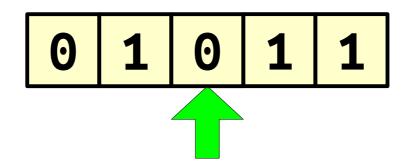


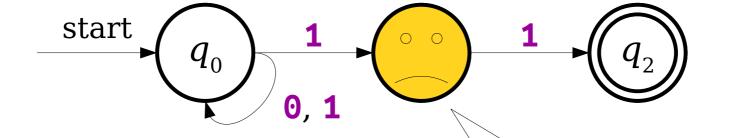




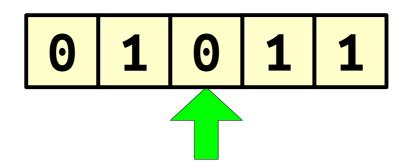


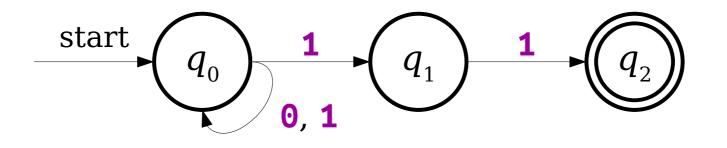


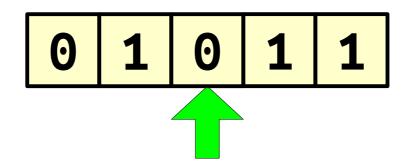


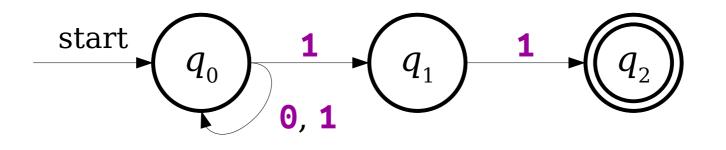


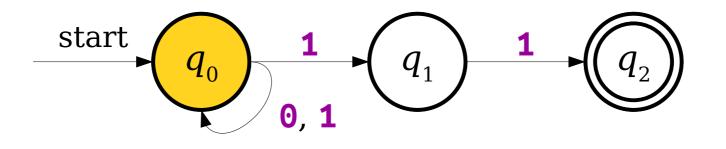
Oh no! There's no transition defined!

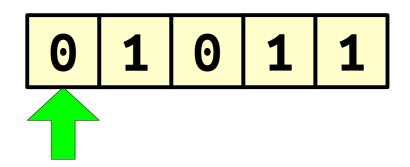


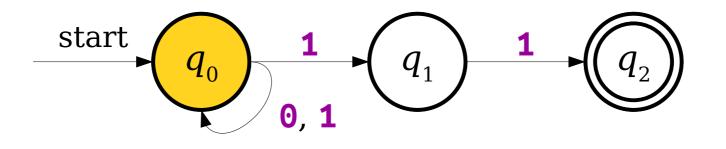


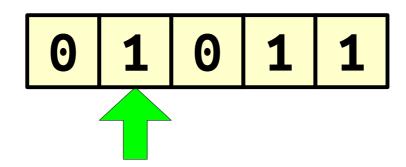


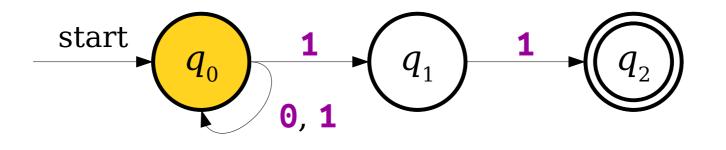


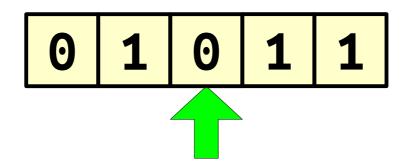


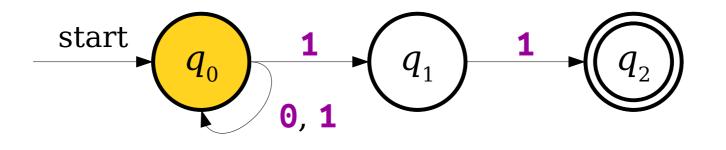


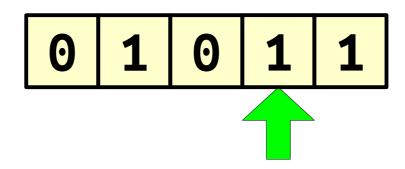


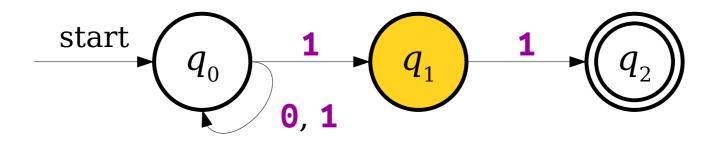


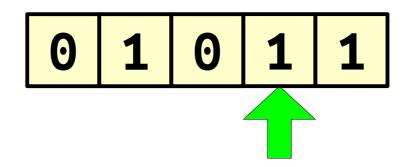


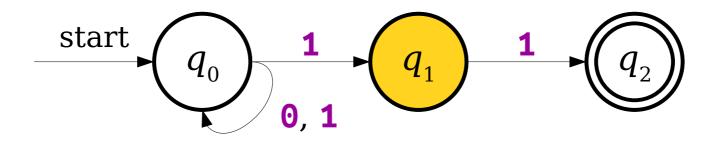


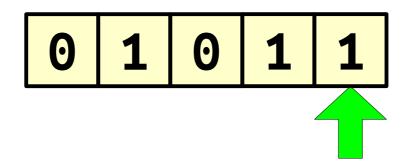


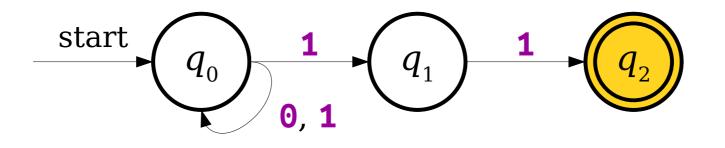


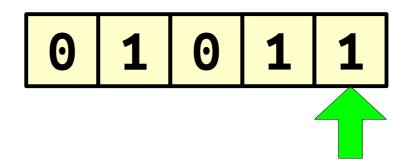


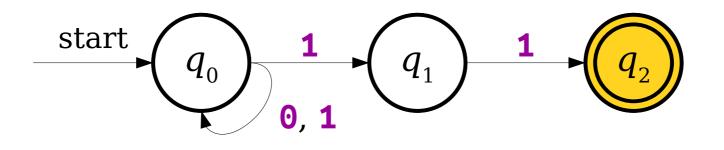


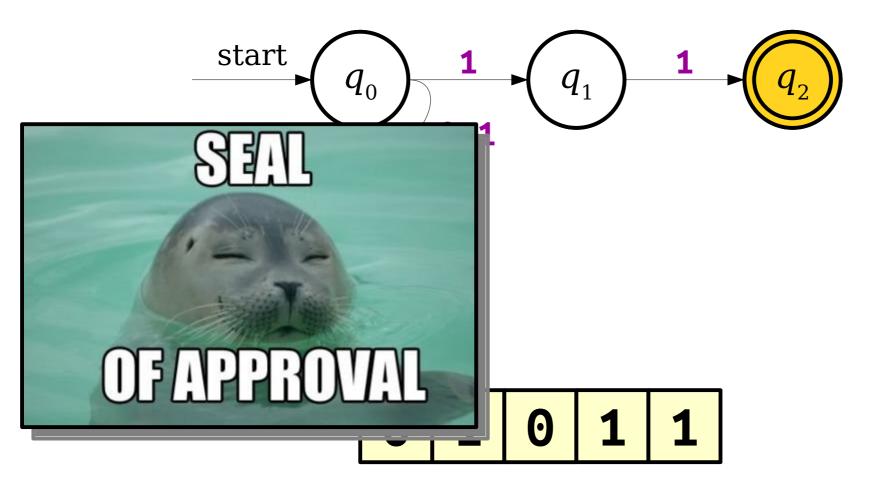


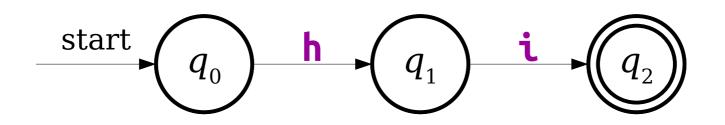


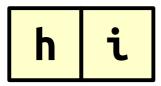


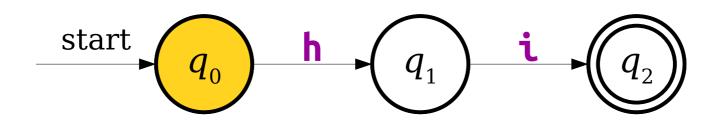


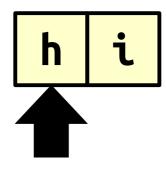


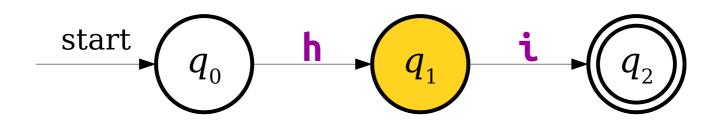


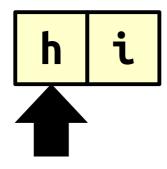


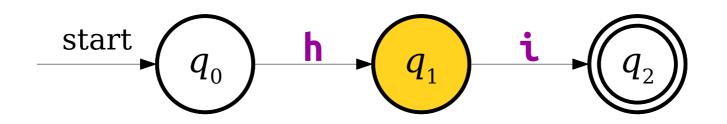


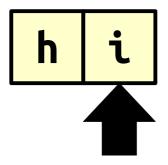


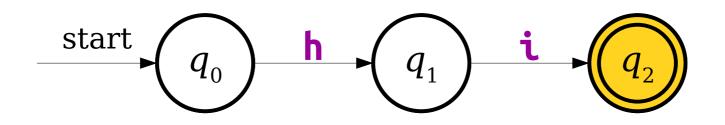


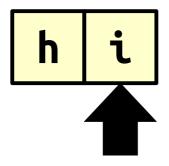


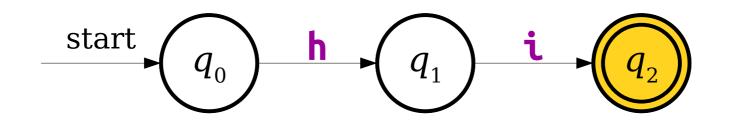


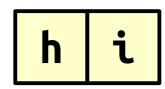


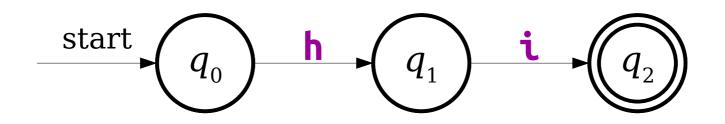


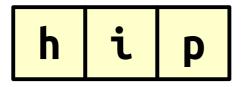


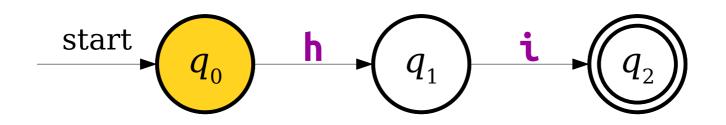


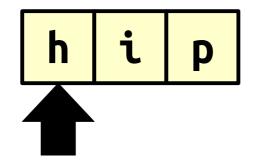


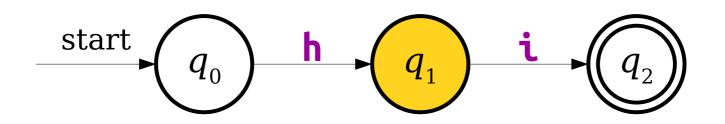


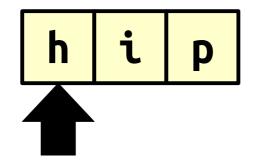


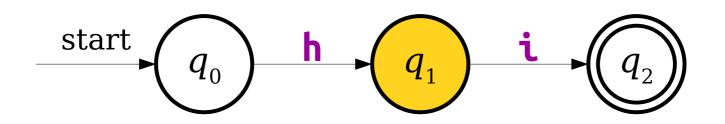


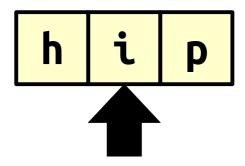


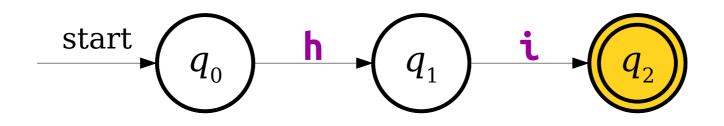


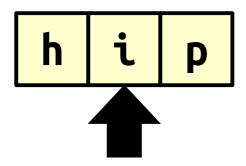


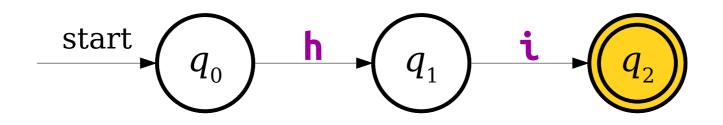


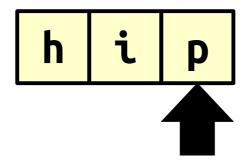


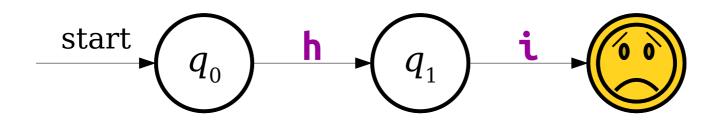


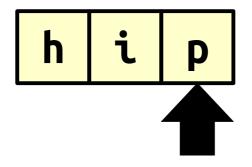


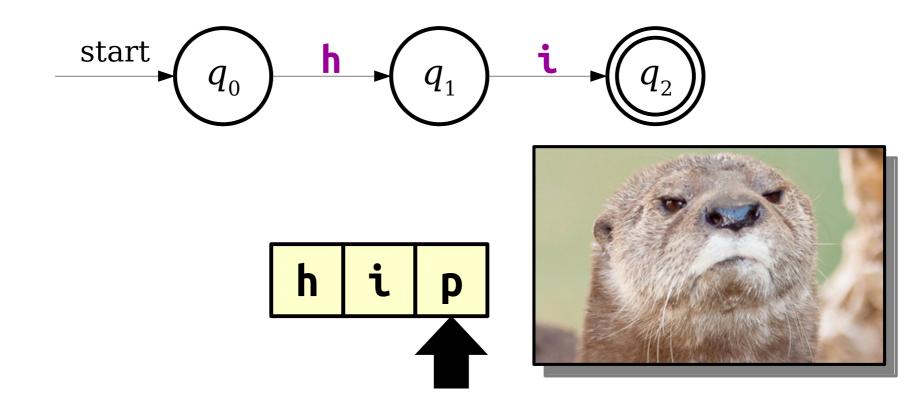


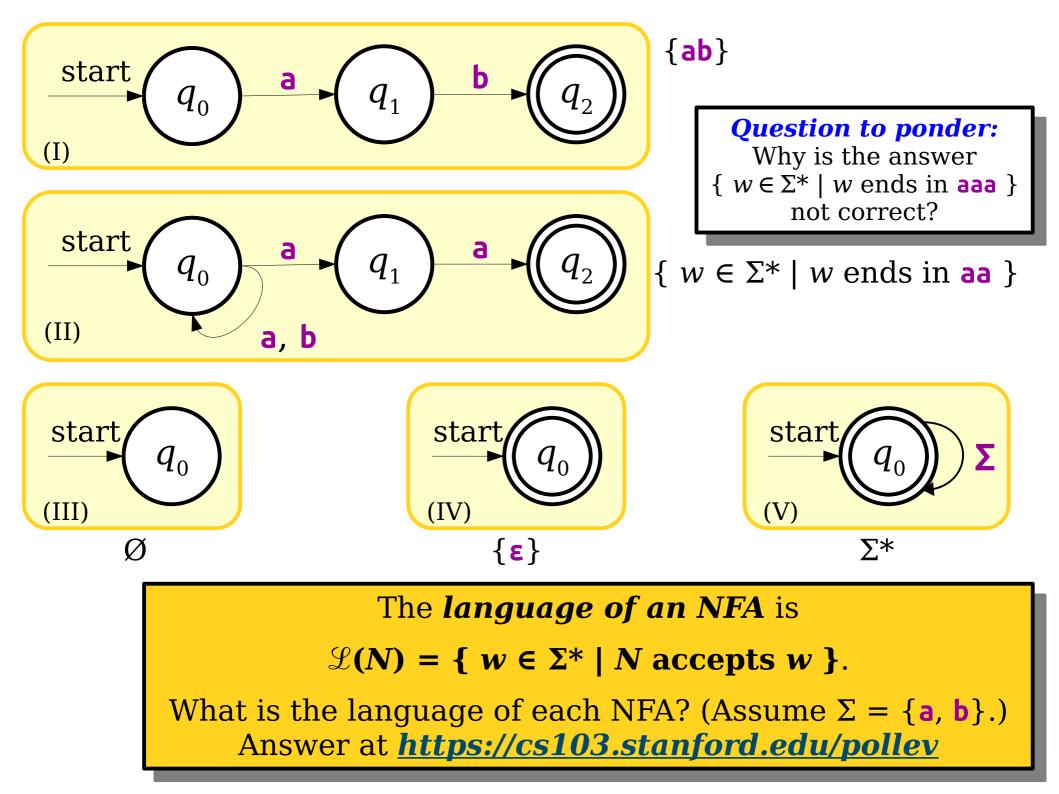






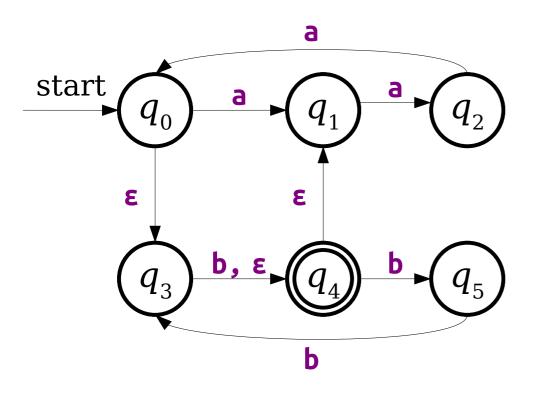




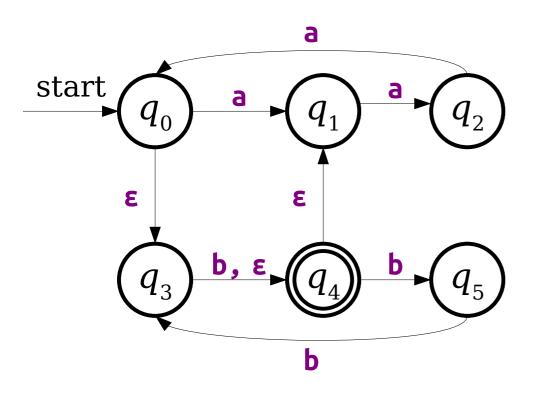


- NFAs have a special type of transition called the $\epsilon\text{-transition}.$
- An NFA may follow any number of ϵ -transitions at any time without consuming any input.

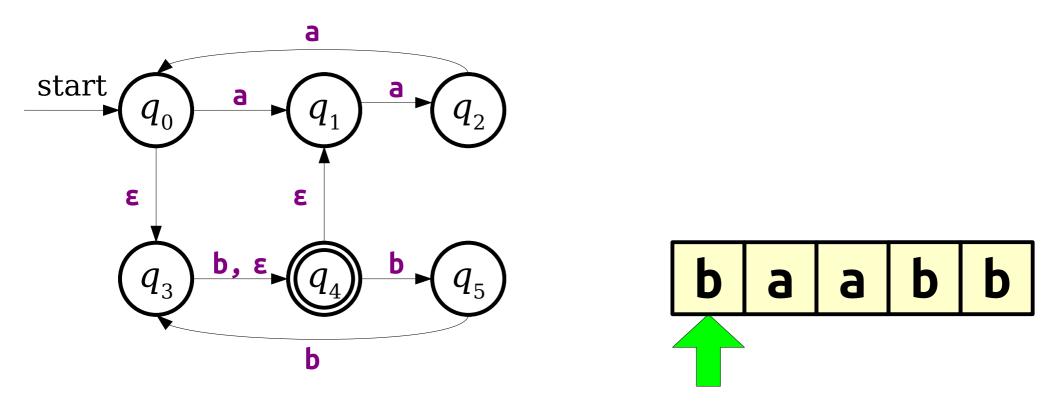
- NFAs have a special type of transition called the $\epsilon\text{-transition}.$
- An NFA may follow any number of ϵ -transitions at any time without consuming any input.



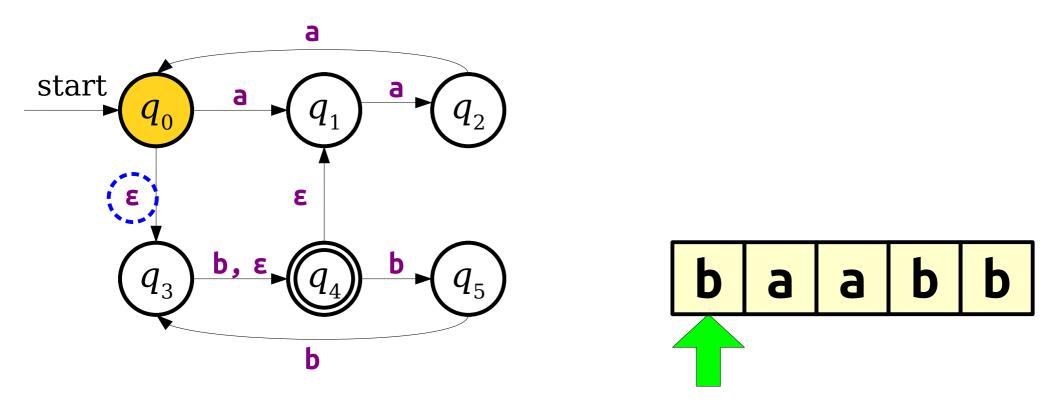
- NFAs have a special type of transition called the $\epsilon\text{-transition}.$
- An NFA may follow any number of ϵ -transitions at any time without consuming any input.



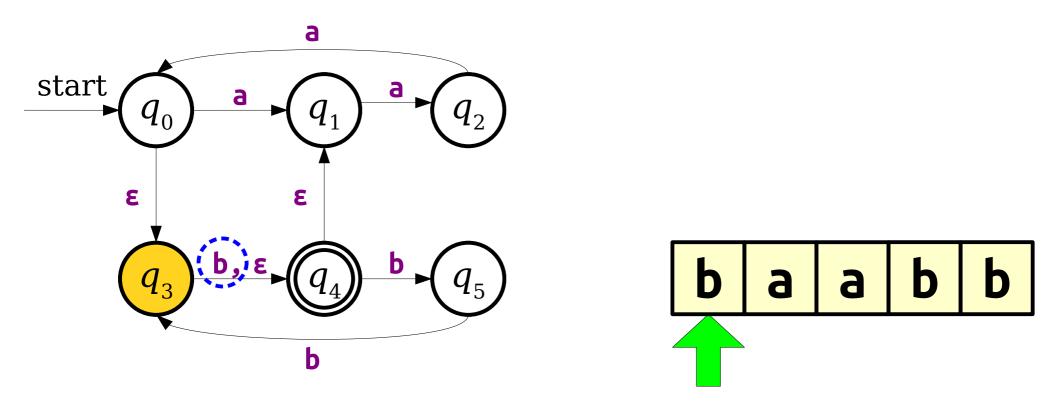
- NFAs have a special type of transition called the $\epsilon\text{-transition}.$
- An NFA may follow any number of ϵ -transitions at any time without consuming any input.



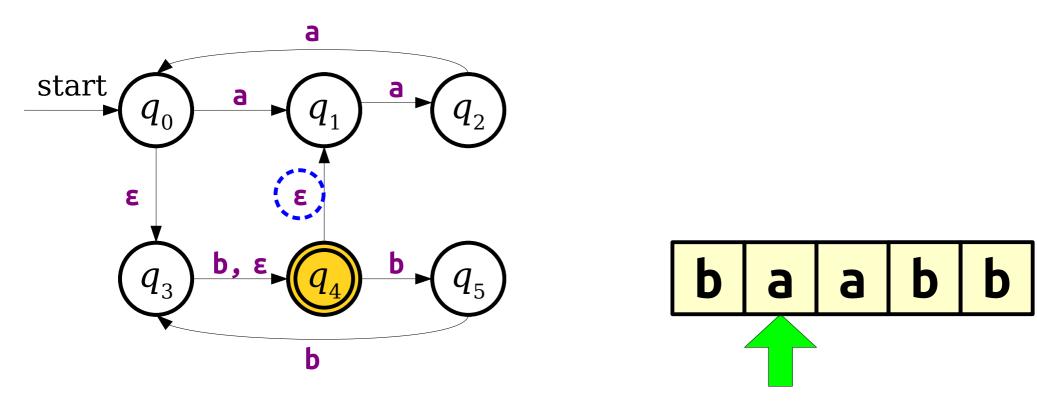
- NFAs have a special type of transition called the $\epsilon\text{-transition}.$
- An NFA may follow any number of ϵ -transitions at any time without consuming any input.



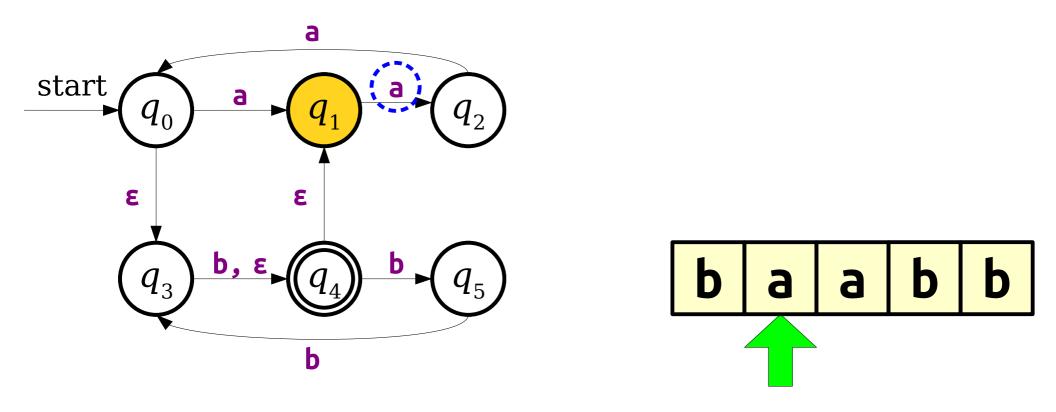
- NFAs have a special type of transition called the $\epsilon\text{-transition}.$
- An NFA may follow any number of $\epsilon\text{-transitions}$ at any time without consuming any input.



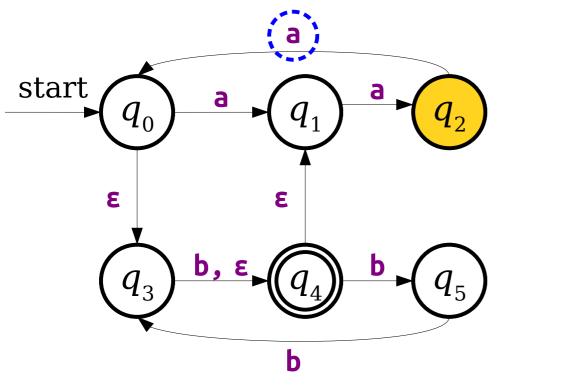
- NFAs have a special type of transition called the $\epsilon\text{-transition}.$
- An NFA may follow any number of $\epsilon\text{-transitions}$ at any time without consuming any input.



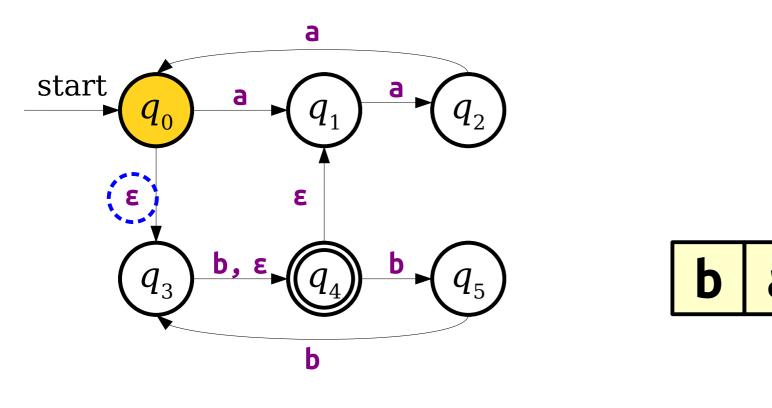
- NFAs have a special type of transition called the $\epsilon\text{-transition}.$
- An NFA may follow any number of ϵ -transitions at any time without consuming any input.



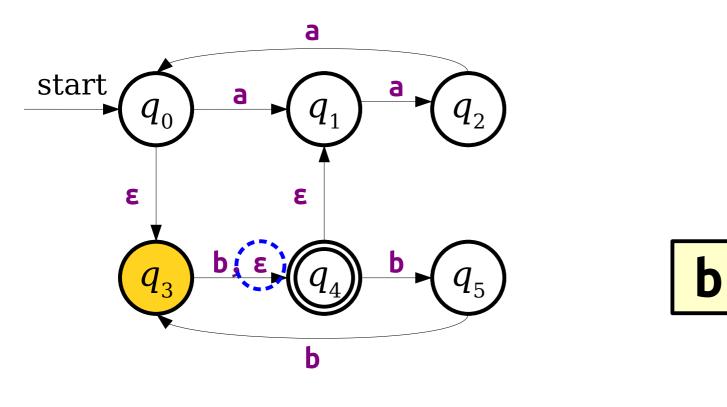
- NFAs have a special type of transition called the $\epsilon\text{-transition}.$
- An NFA may follow any number of ϵ -transitions at any time without consuming any input.



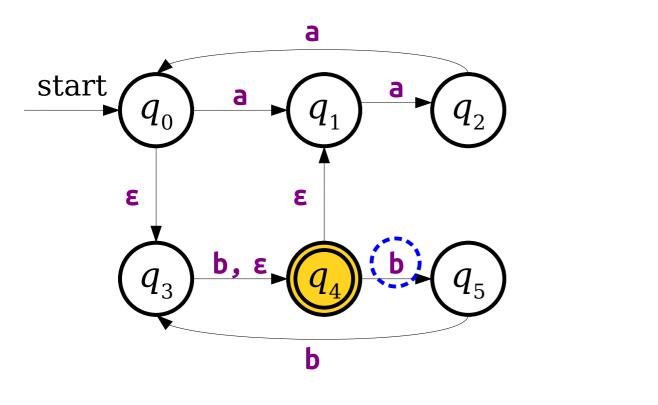
- NFAs have a special type of transition called the $\epsilon\text{-transition}.$
- An NFA may follow any number of ϵ -transitions at any time without consuming any input.



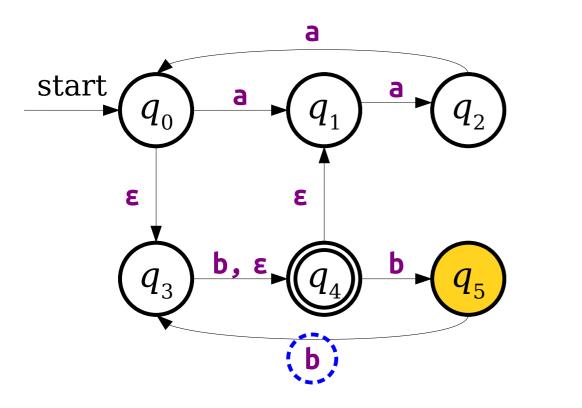
- NFAs have a special type of transition called the $\epsilon\text{-transition}.$
- An NFA may follow any number of $\epsilon\text{-transitions}$ at any time without consuming any input.



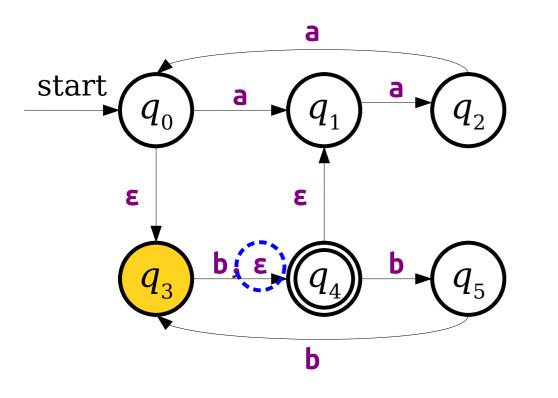
- NFAs have a special type of transition called the $\epsilon\text{-transition}.$
- An NFA may follow any number of $\epsilon\text{-transitions}$ at any time without consuming any input.



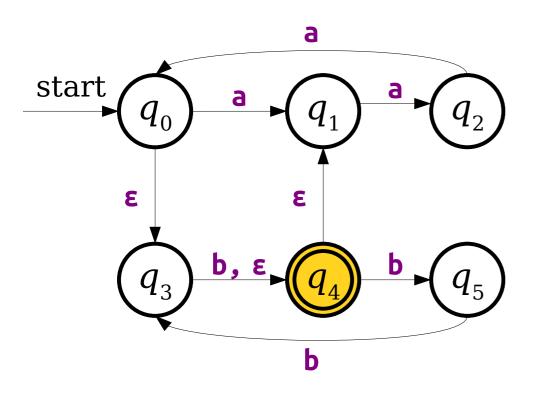
- NFAs have a special type of transition called the $\epsilon\text{-transition}.$
- An NFA may follow any number of $\epsilon\text{-transitions}$ at any time without consuming any input.



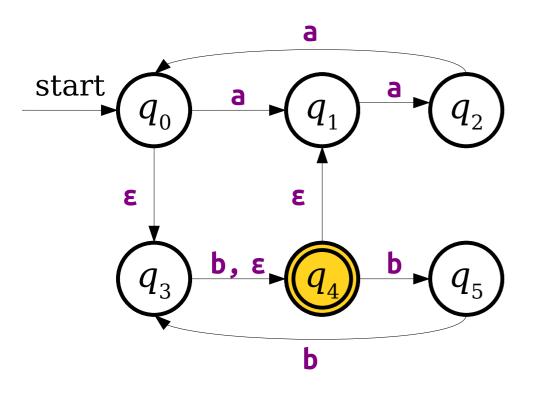
- NFAs have a special type of transition called the $\epsilon\text{-transition}.$
- An NFA may follow any number of ϵ -transitions at any time without consuming any input.

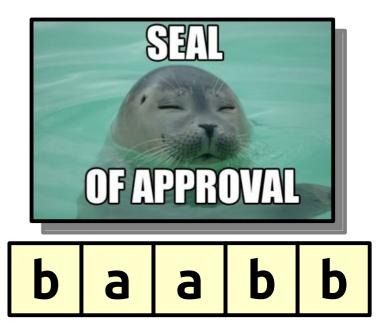


- NFAs have a special type of transition called the $\epsilon\text{-transition}.$
- An NFA may follow any number of ϵ -transitions at any time without consuming any input.



- NFAs have a special type of transition called the $\epsilon\text{-transition}.$
- An NFA may follow any number of $\epsilon\text{-transitions}$ at any time without consuming any input.





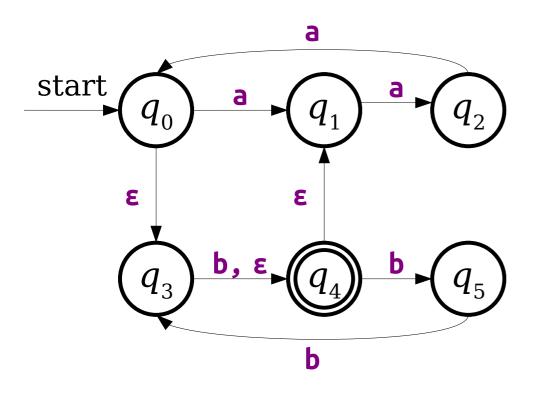
- NFAs have a special type of transition called the $\epsilon\text{-transition}.$
- An NFA may follow any number of ϵ -transitions at any time without consuming any input.

Not at all fun or

rewarding exercise:

what is the language of

this NFA?



- NFAs have a special type of transition called the ε-transition.
- An NFA may follow any number of ϵ -transitions at any time without consuming any input.
- NFAs are not *required* to follow ε-transitions. It's simply another option at the machine's disposal.

NFAs

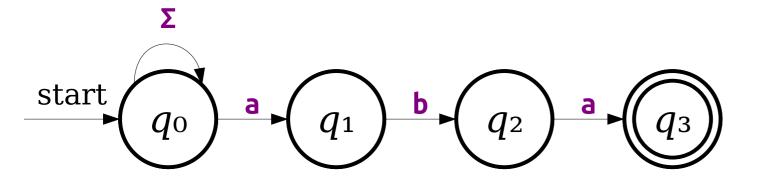
- An NFA is defined relative to some alphabet $\boldsymbol{\Sigma}.$
- For each state in the NFA, there may be any number of transitions defined for each symbol in Σ , plus any number of ϵ -transitions.
 - This is the "nondeterministic" part of NFA.
- There is a unique start state.
- There are zero or more accepting states.

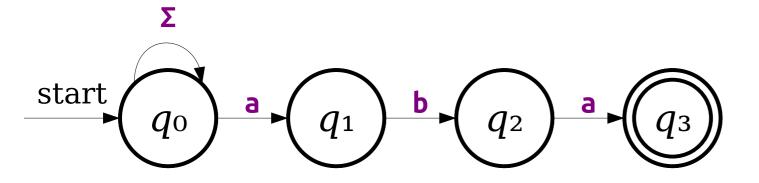
DFAs

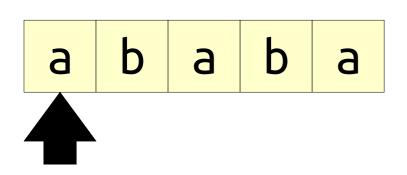
- A DFA is defined relative to some alphabet $\boldsymbol{\Sigma}.$
- For each state in the DFA, there must be exactly one transition defined for each symbol in Σ . Additionally, ϵ -transitions are not allowed.
 - This is the "deterministic" part of DFA.
- There is a unique start state.
- There are zero or more accepting states.

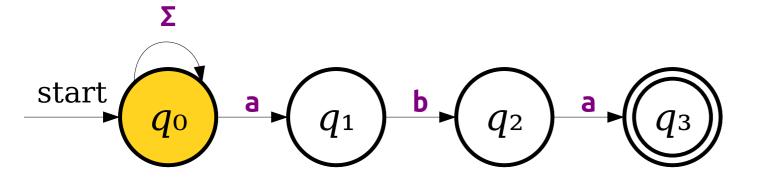
Intuiting Nondeterminism

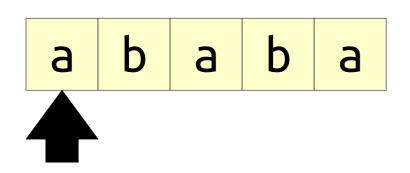
- Nondeterministic machines are a serious departure from physical computers. How can we build up an intuition for them?
- There are two particularly useful frameworks for interpreting nondeterminism:
 - **Perfect positive guessing**
 - Massive parallelism

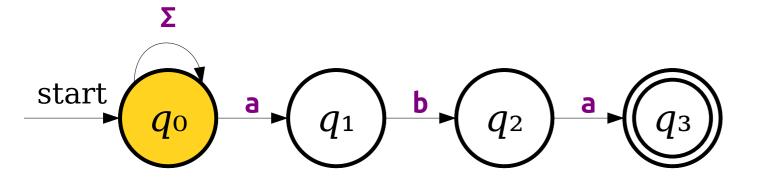


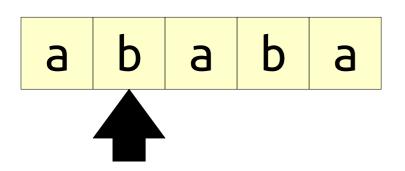


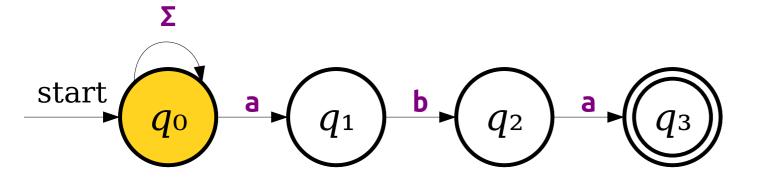


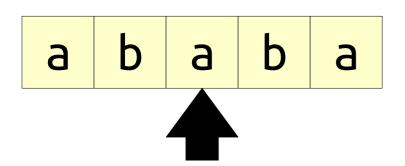


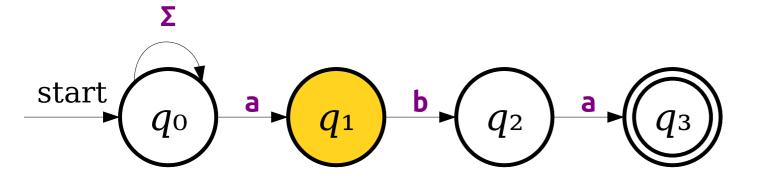


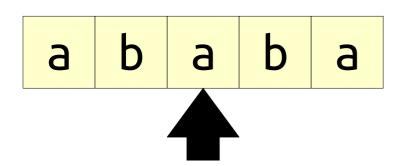


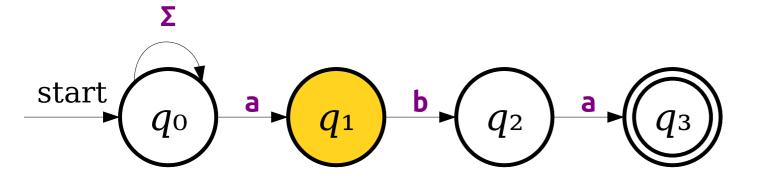


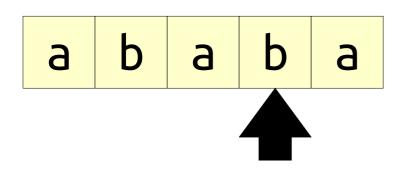


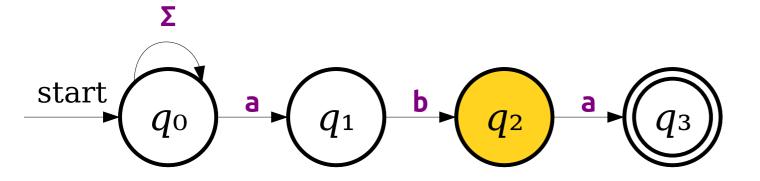


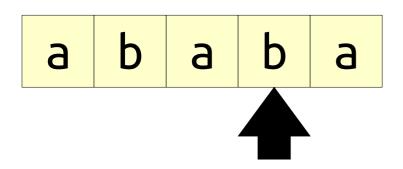


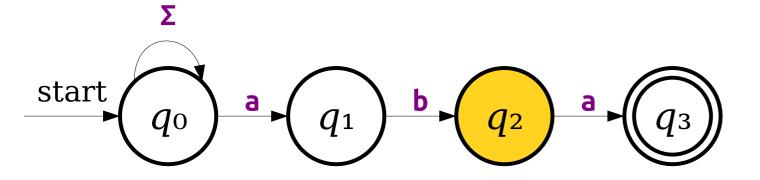


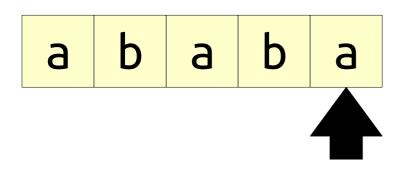


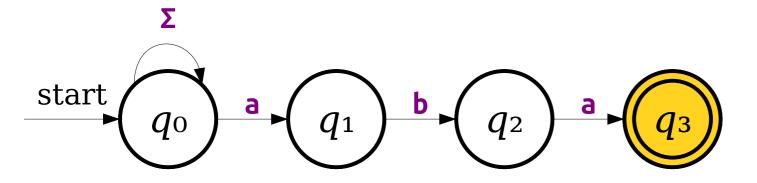


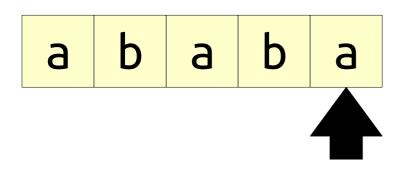


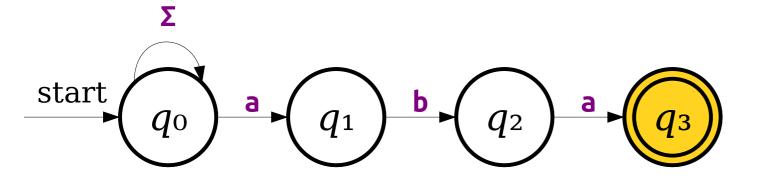








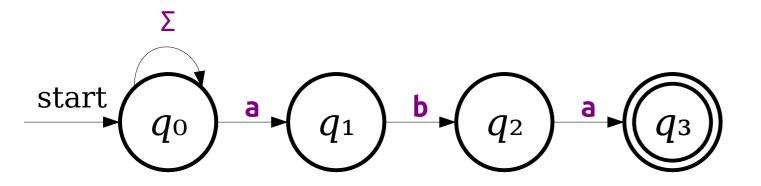


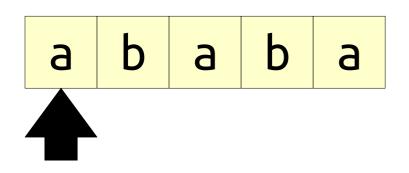


a b a b a

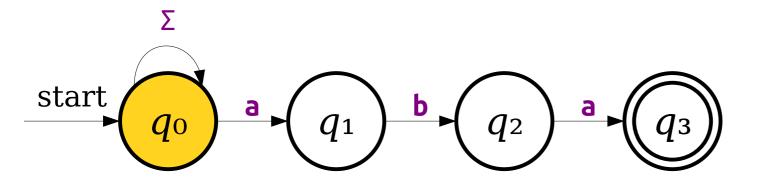
- We can view nondeterministic machines as having *Magic Superpowers* that enable them to guess choices that lead to an accepting state.
 - If there is at least one choice that leads to an accepting state, the machine will guess it.
 - If there are no choices, the machine guesses any one of the wrong guesses.
- There is no known way to physically model this intuition of nondeterminism this is quite a departure from reality!

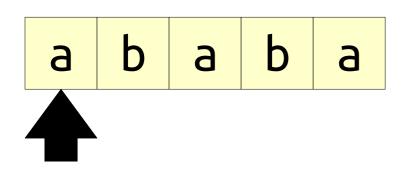
Massive Parallelism

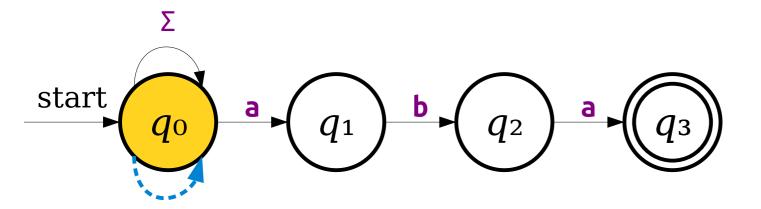


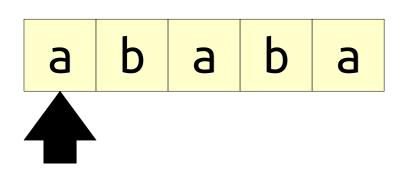


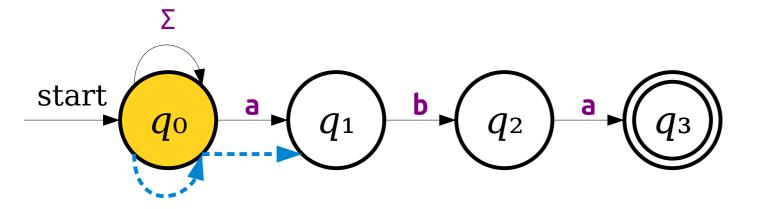
Massive Parallelism

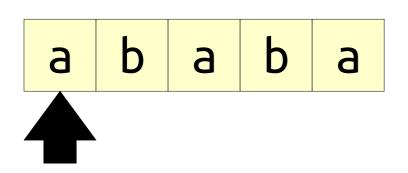


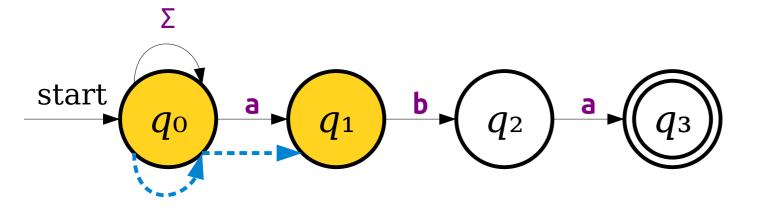


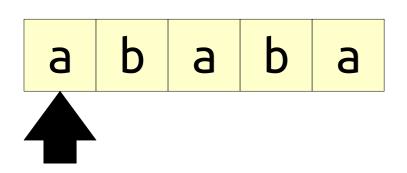


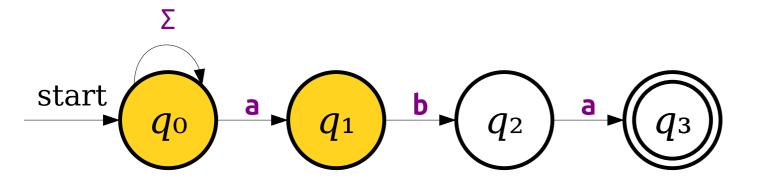


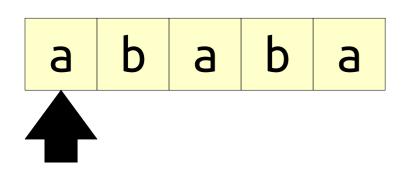


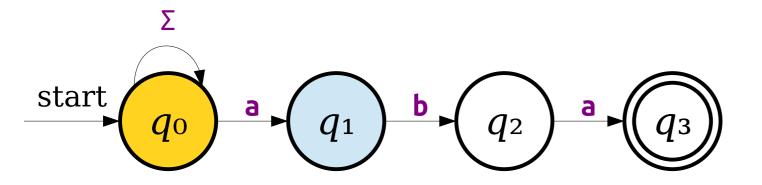


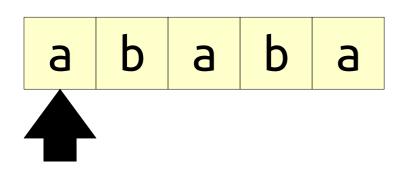


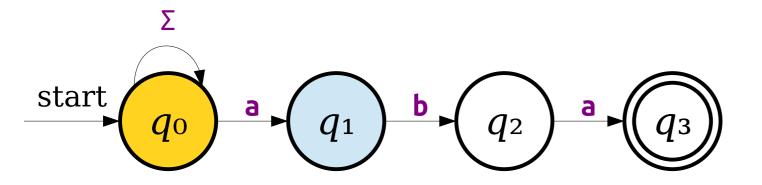


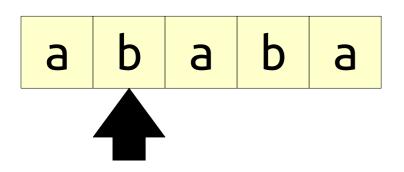


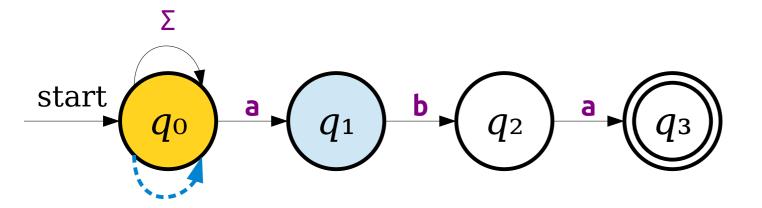


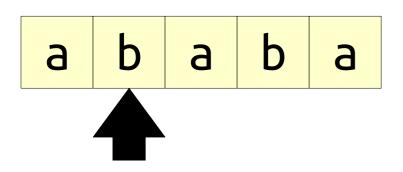


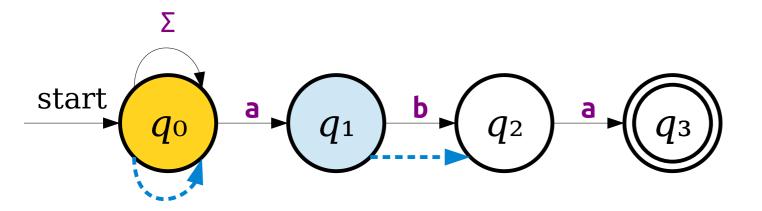


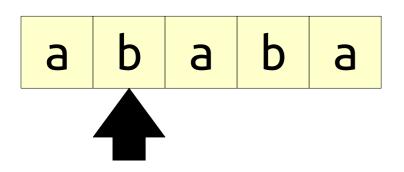


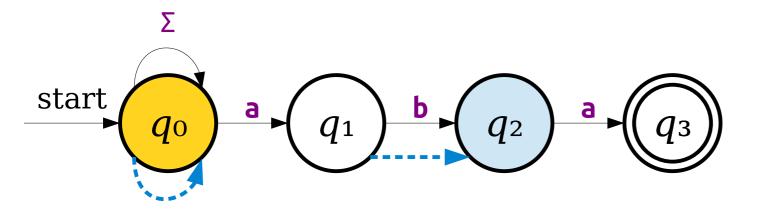


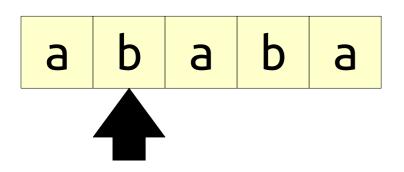


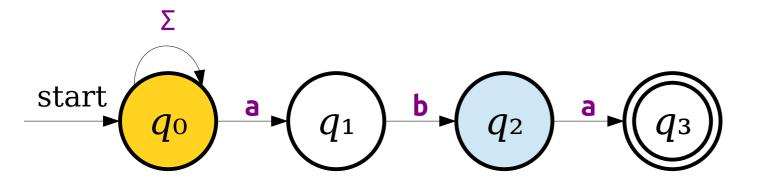


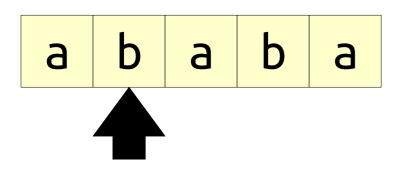


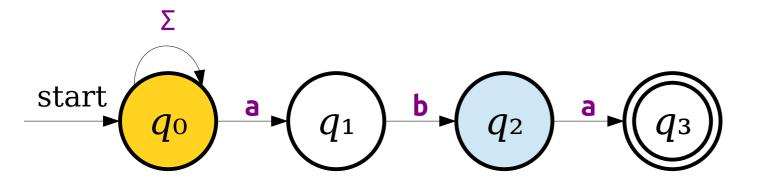


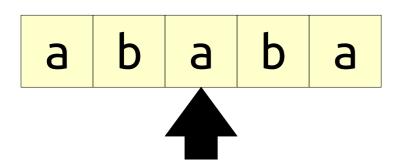


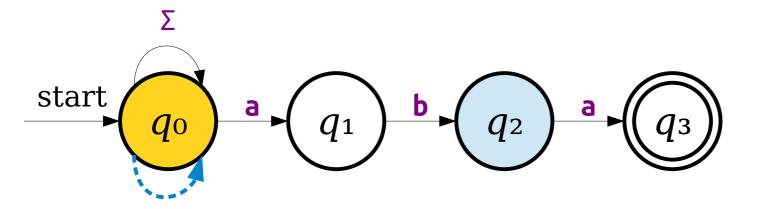


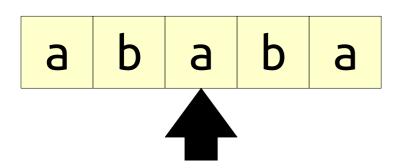


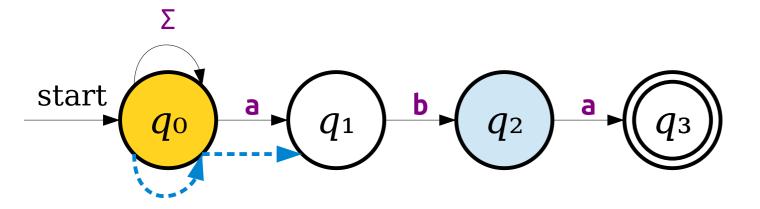


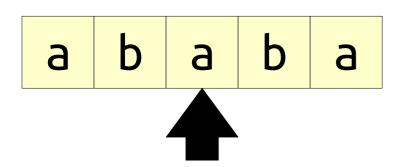


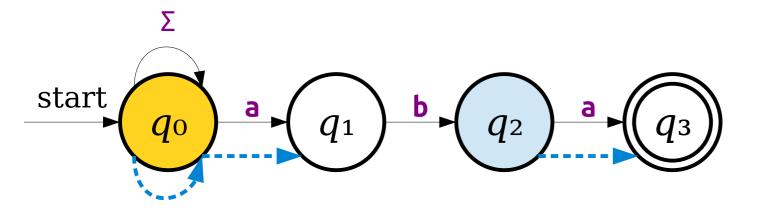


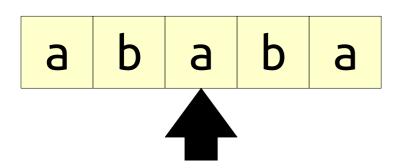


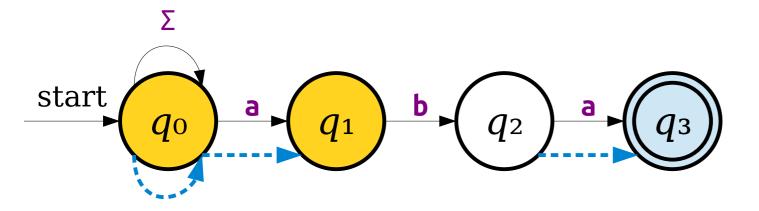


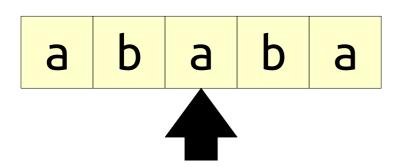


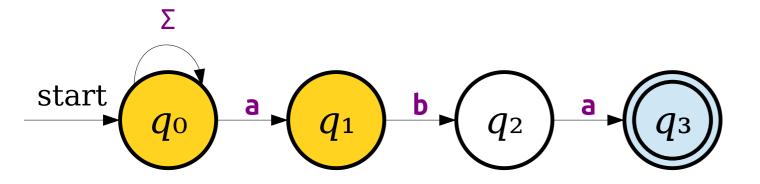


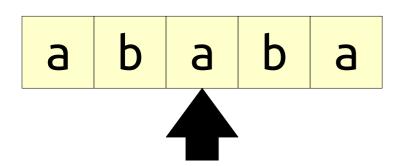


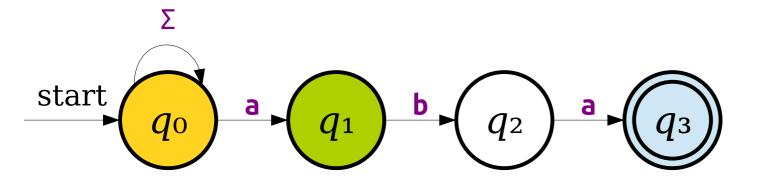


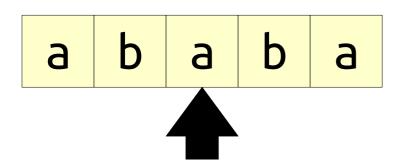


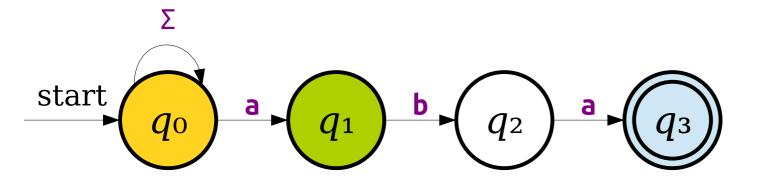


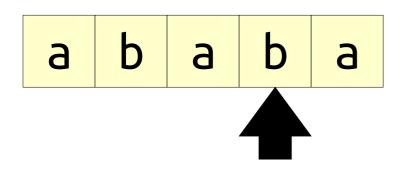


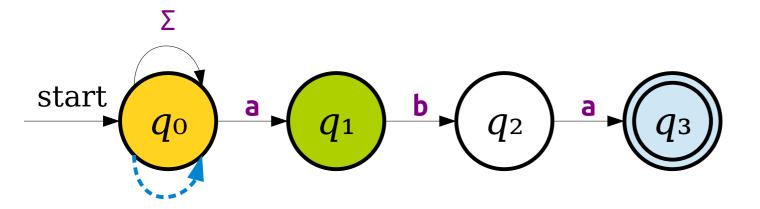


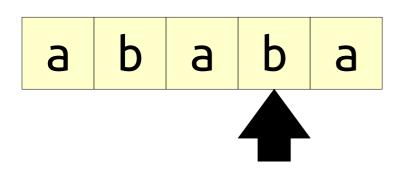


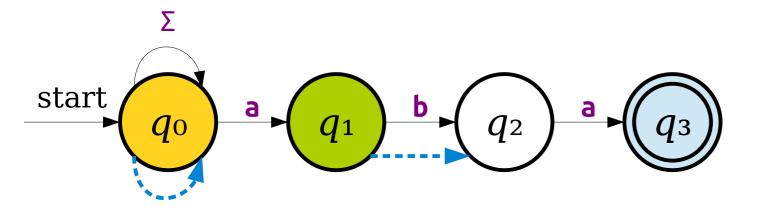


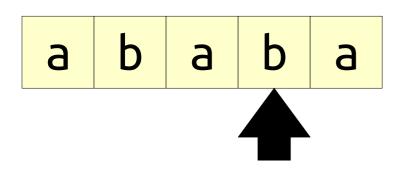


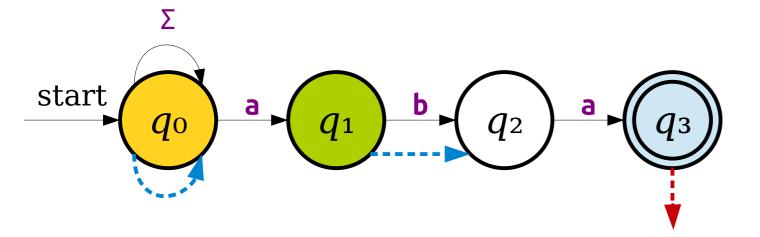


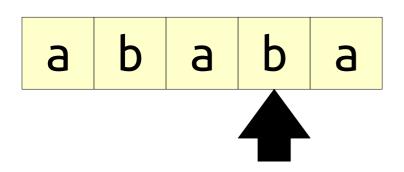


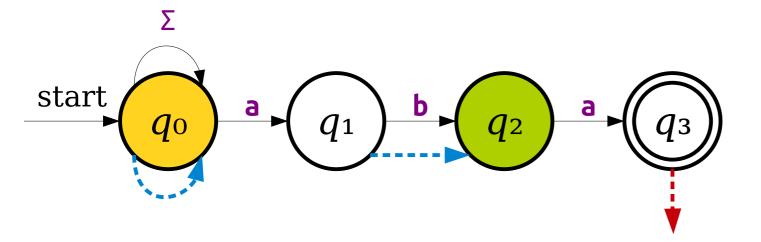


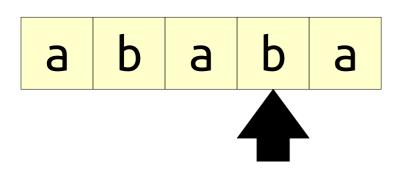


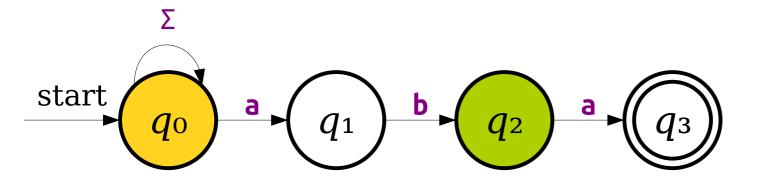


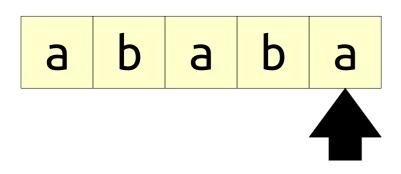


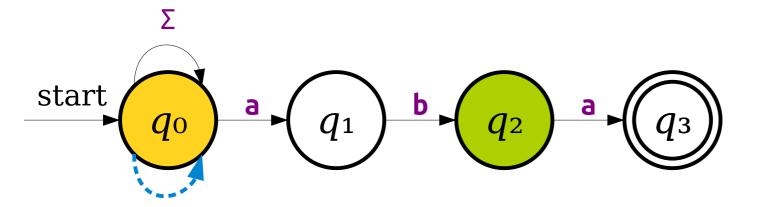


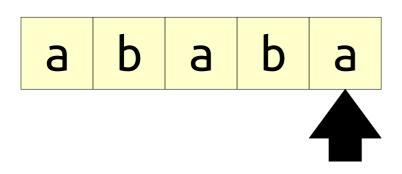


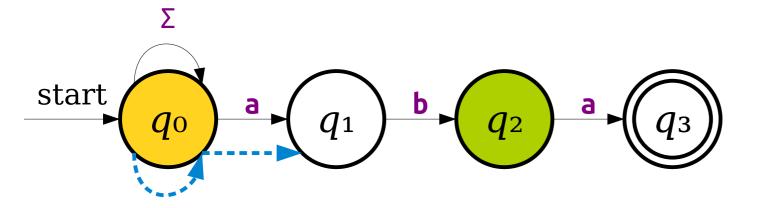


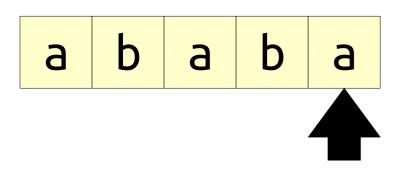


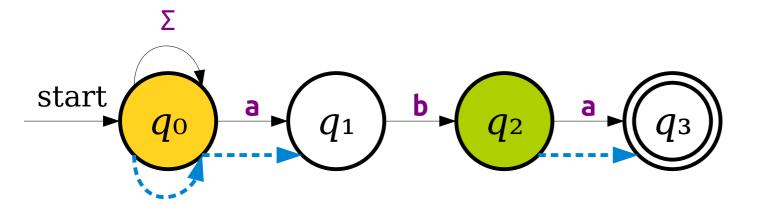


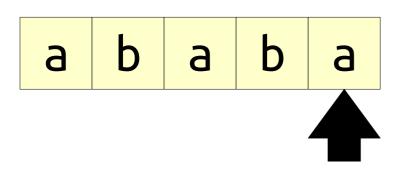


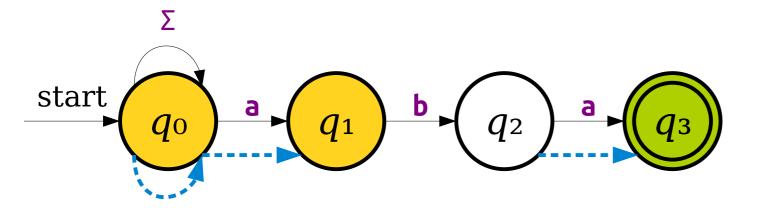


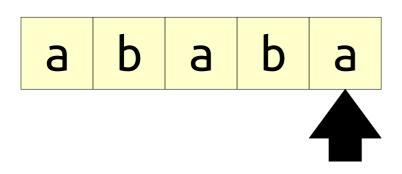


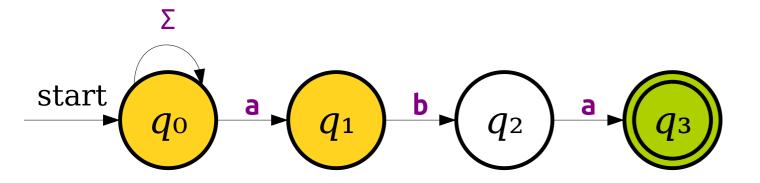


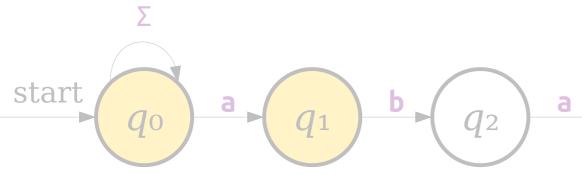






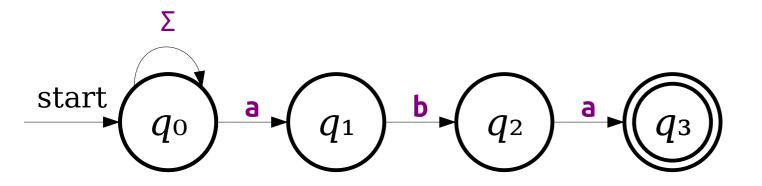


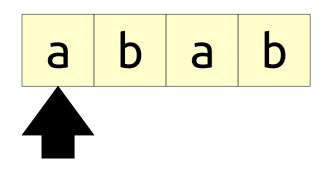


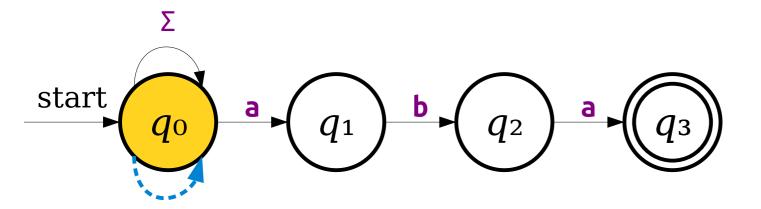


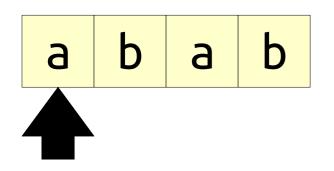
We're in at least one accepting state, so there's some path that gets us to an accepting state.

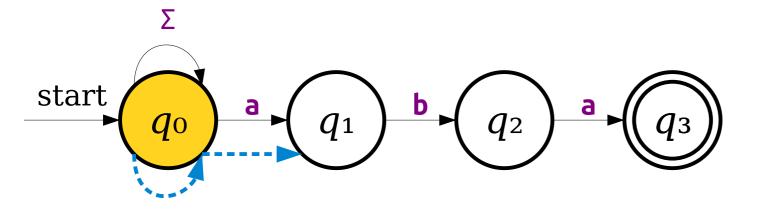
а	b	а	b	а
---	---	---	---	---

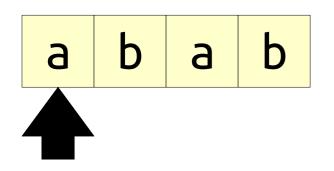


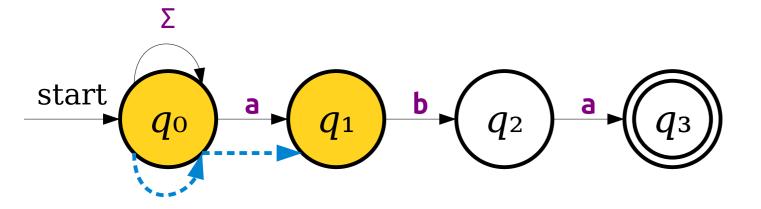


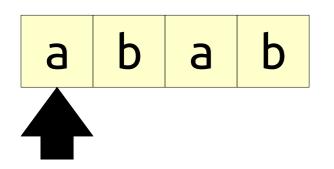


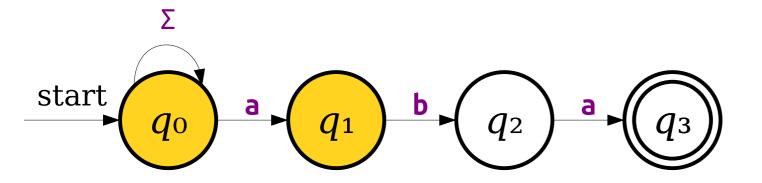


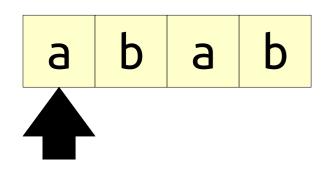


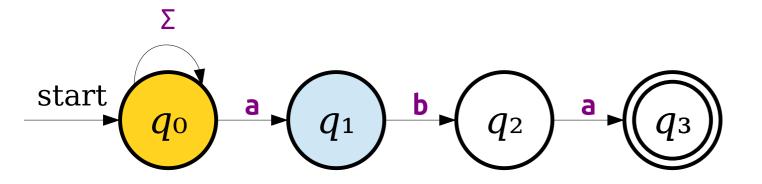


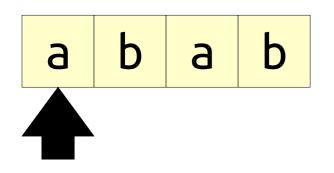


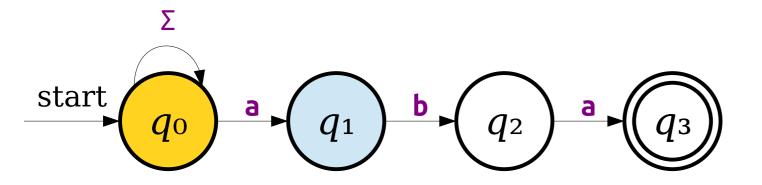


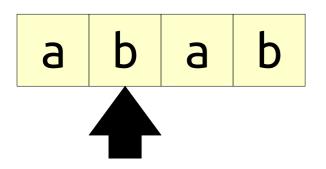


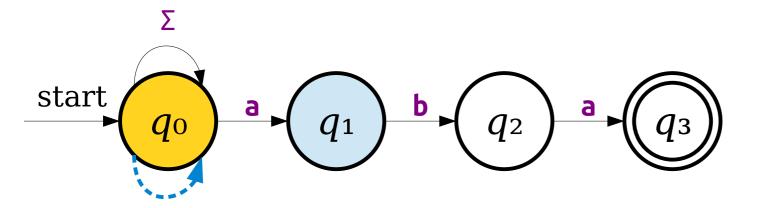


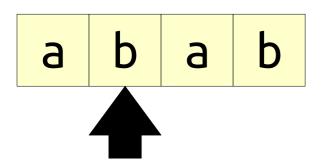


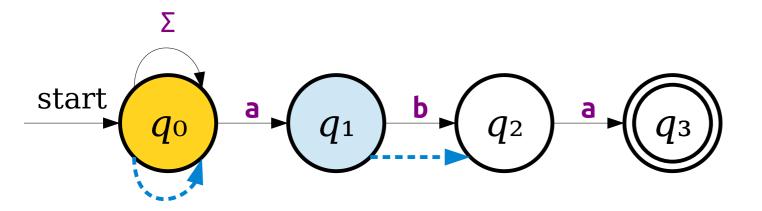


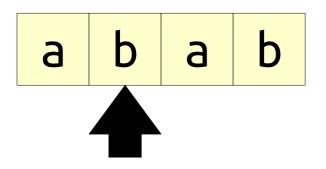


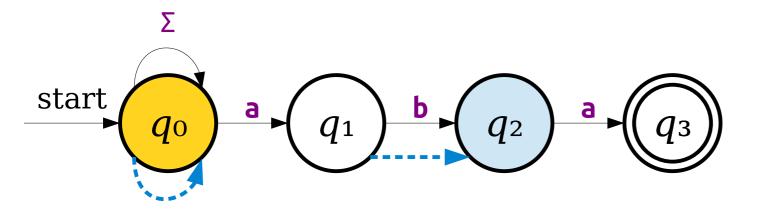


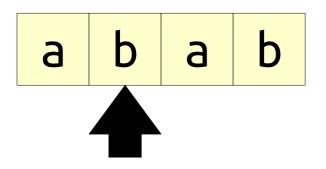


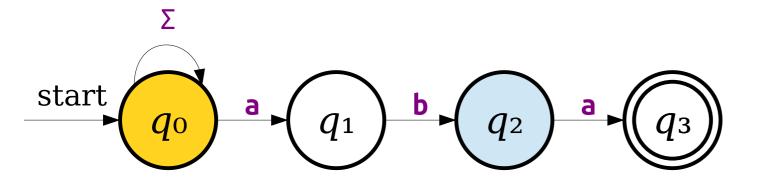


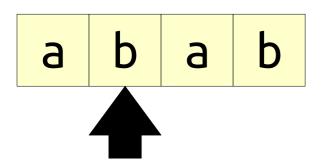


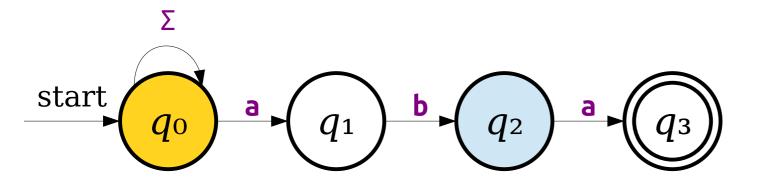


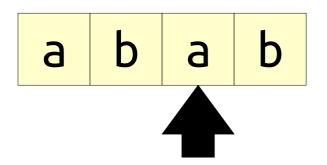


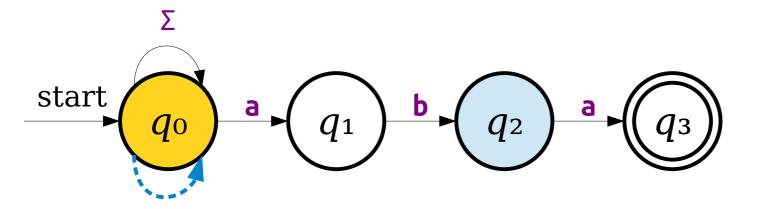


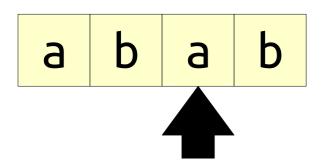


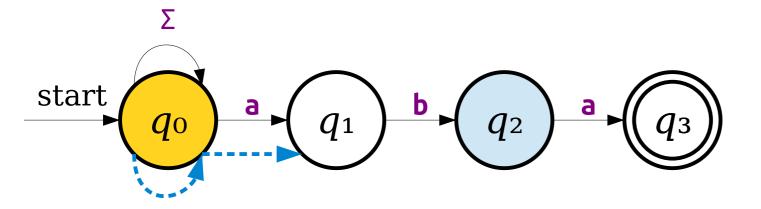


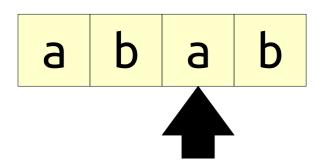


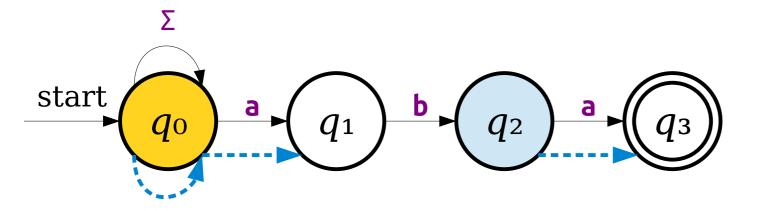


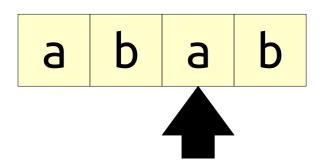


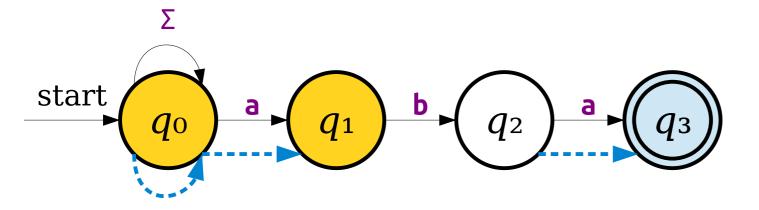


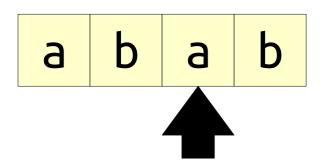


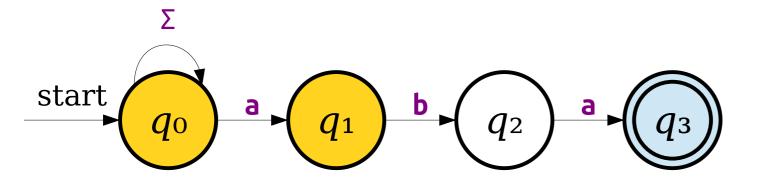


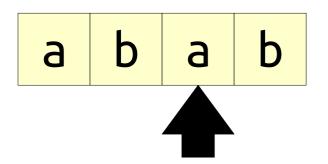


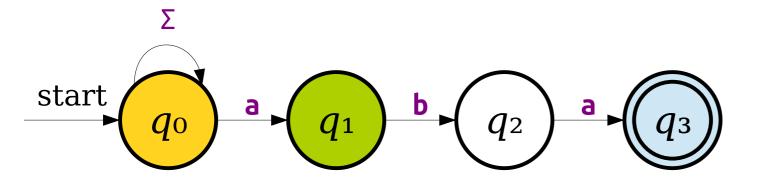


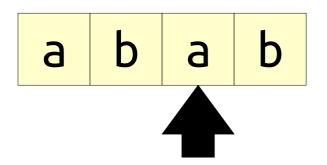


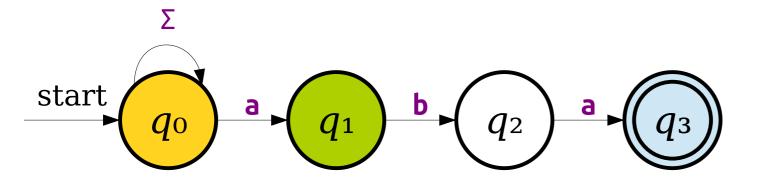


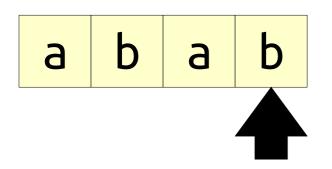


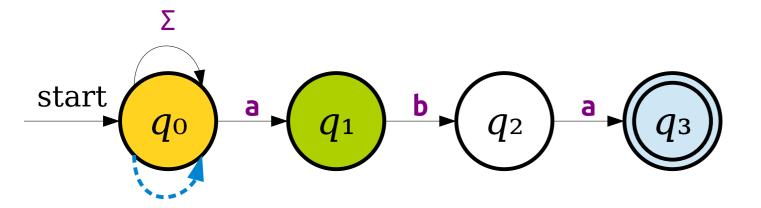


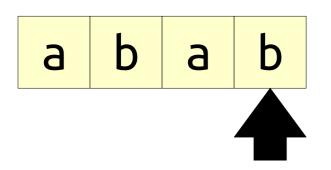


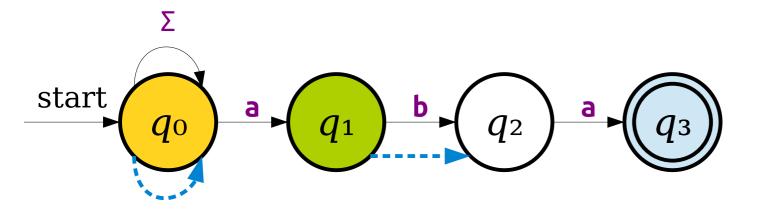


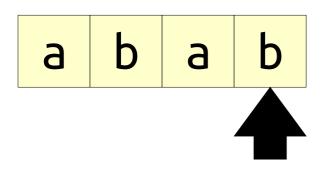


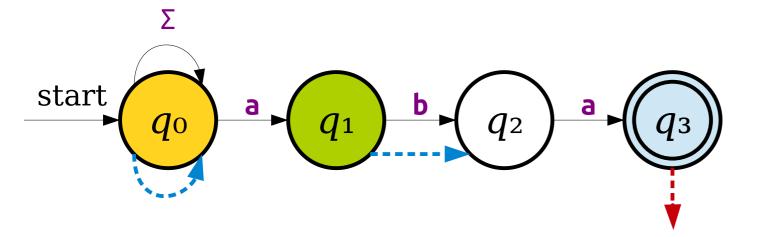


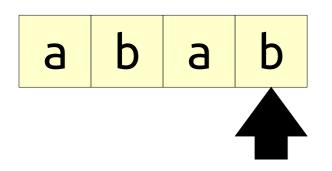


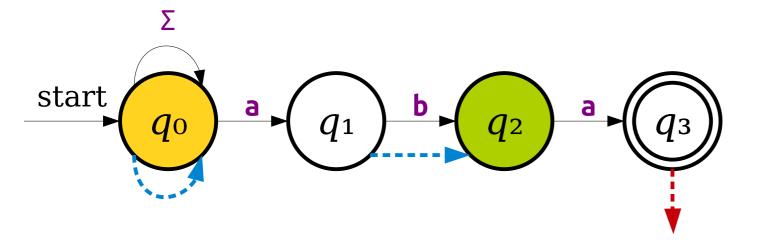


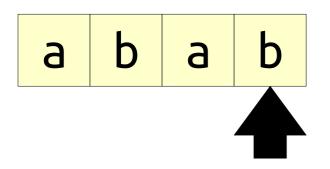


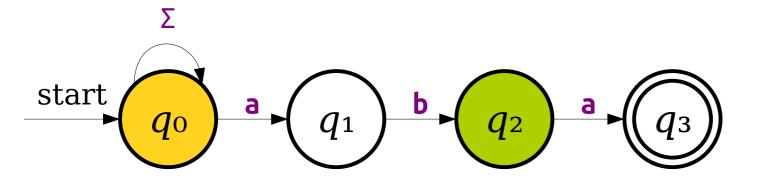




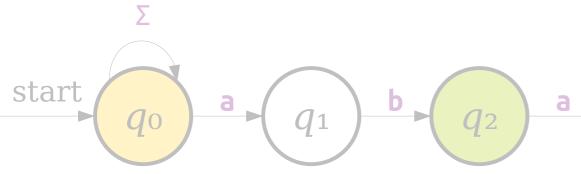








а	b	а	b
---	---	---	---



We're not in any accepting state, so no possible path accepts.

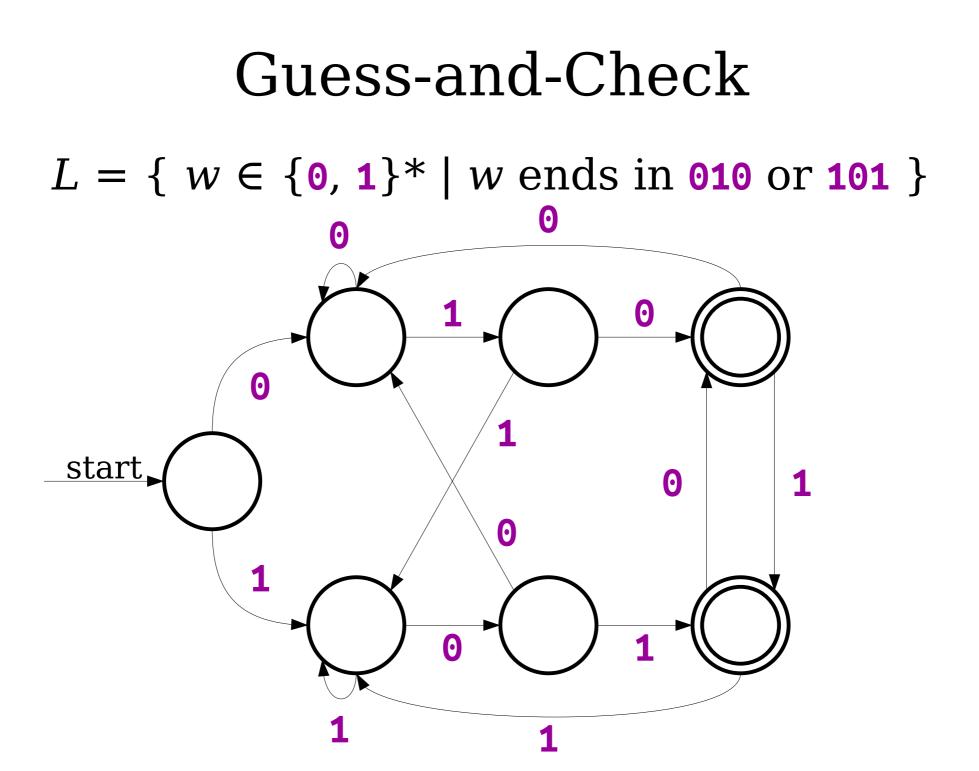
а	b	а	b
---	---	---	---

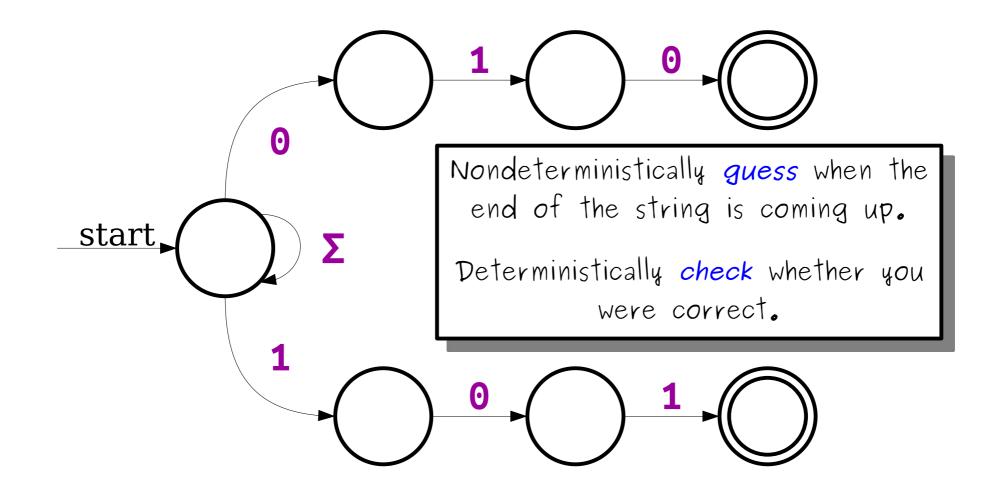
- An NFA can be thought of as a DFA that can be in many states at once.
- At each point in time, when the NFA needs to follow a transition, it tries all the options at the same time.
- (Here's a rigorous explanation about how this works; read this on your own time).
 - Start off in the set of all states formed by taking the start state and including each state that can be reached by zero or more ϵ -transitions.
 - When you read a symbol **a** in a set of states *S*:
 - Form the set S' of states that can be reached by following a single a transition from some state in S.
 - Your new set of states is the set of states in S', plus the states reachable from S' by following zero or more ε -transitions.

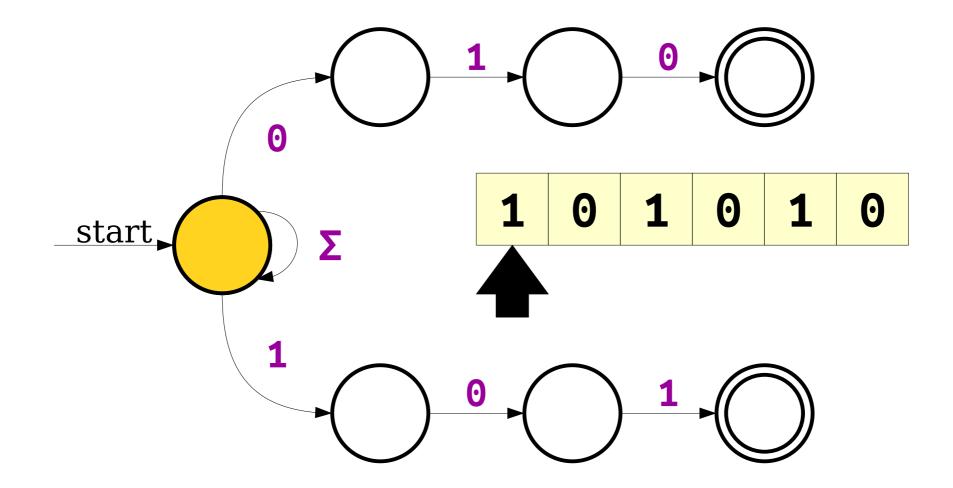
Designing NFAs

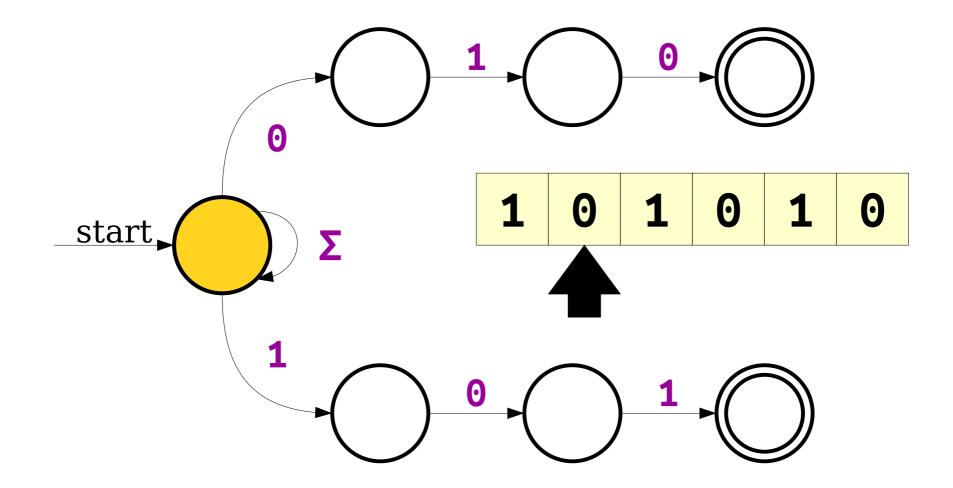
Designing NFAs

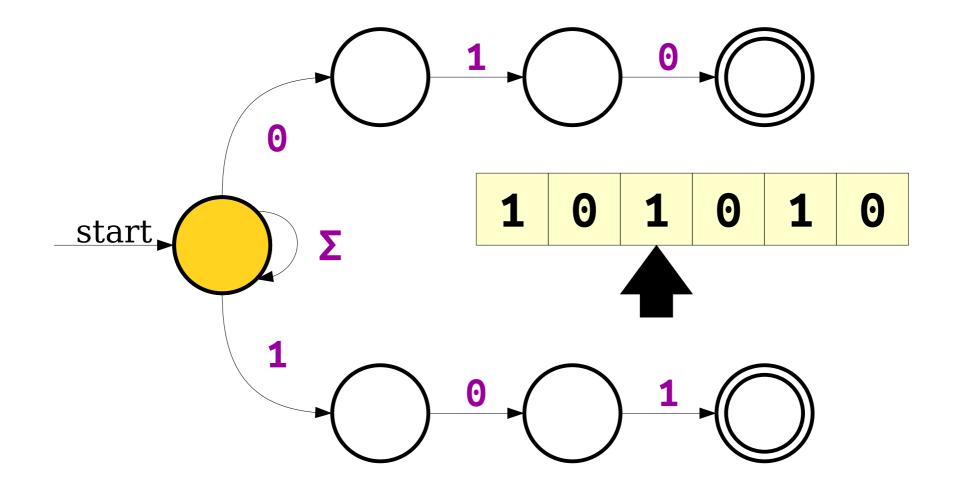
- Embrace the nondeterminism!
- Good model: *Guess-and-check*:
 - Is there some information that you'd really like to have? Have the machine *nondeterministically guess* that information.
 - Then, have the machine *deterministically check* that the choice was correct.
- The *guess* phase corresponds to trying lots of different options.
- The *check* phase corresponds to filtering out bad guesses or wrong options.

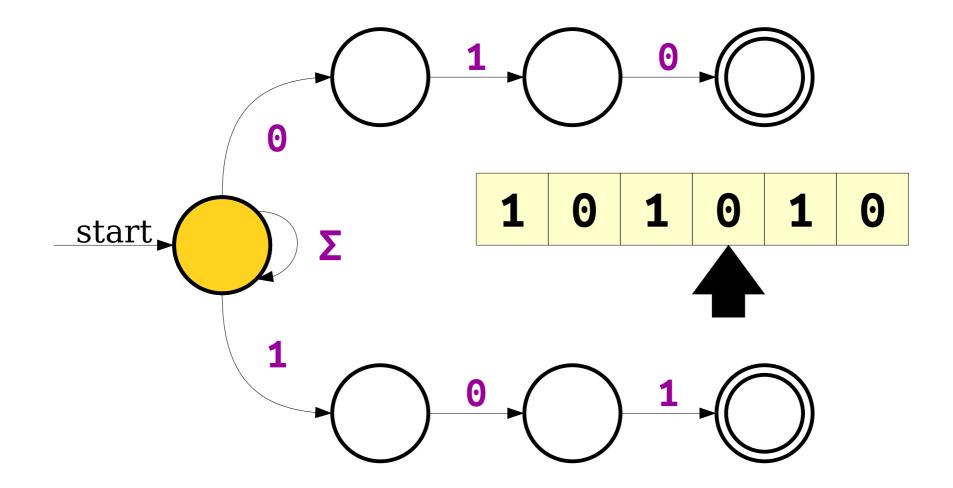


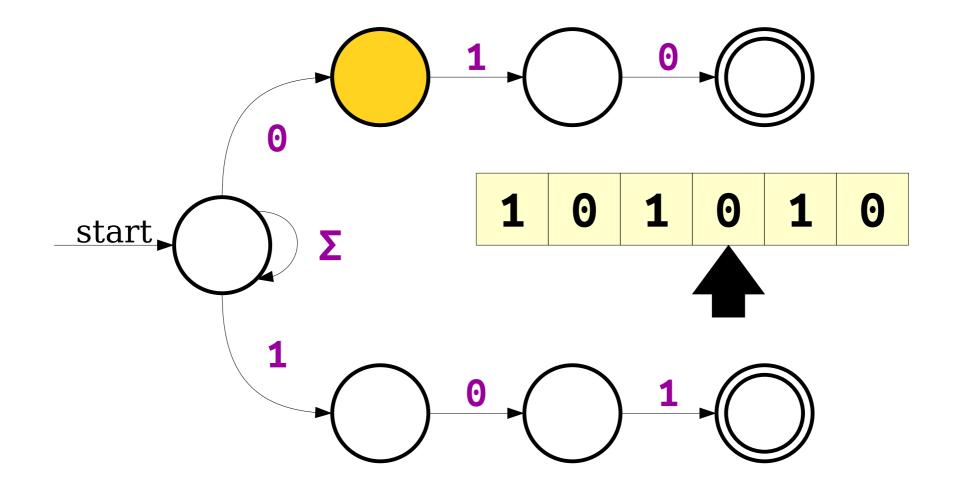


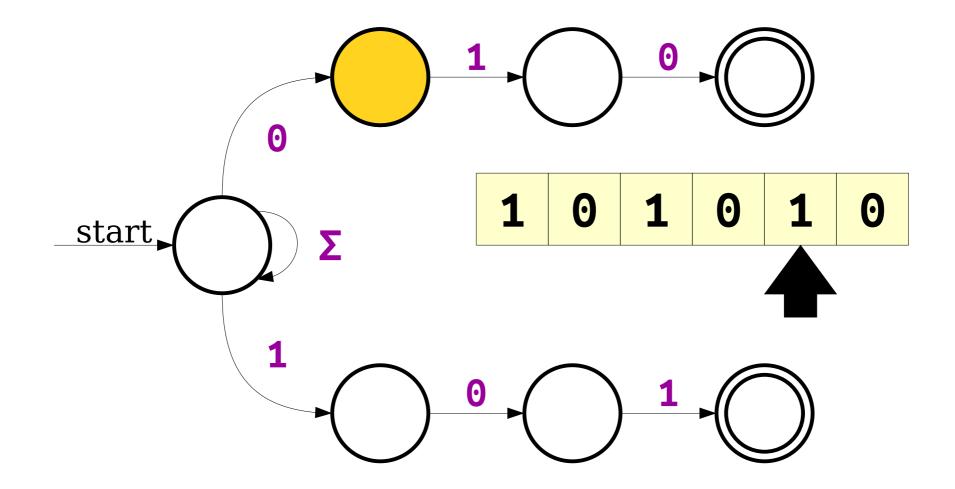


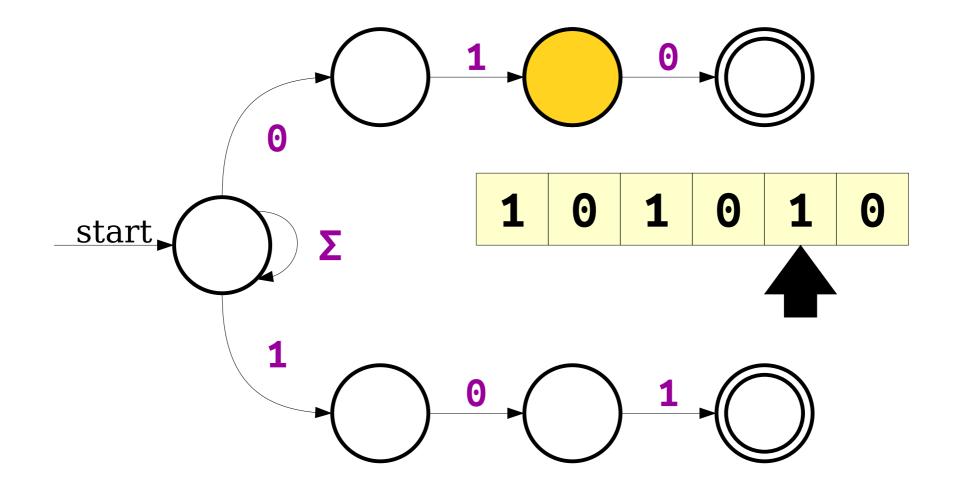


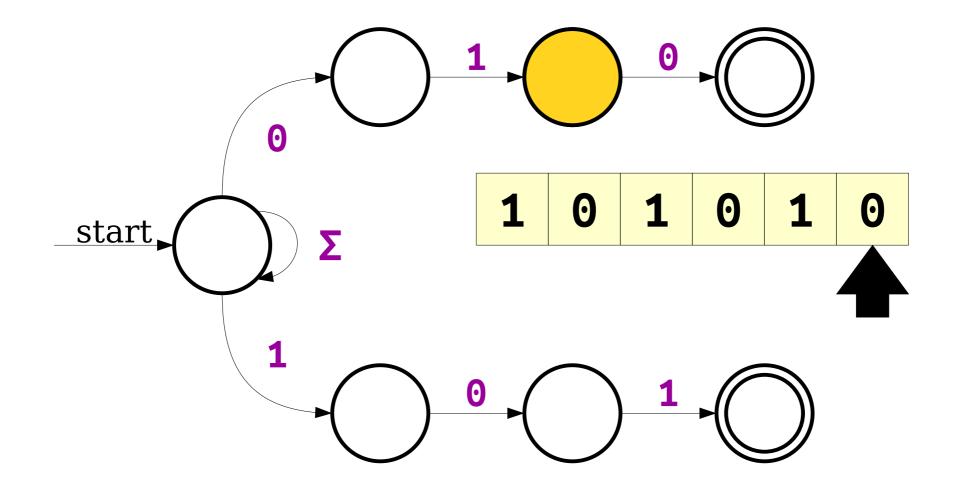


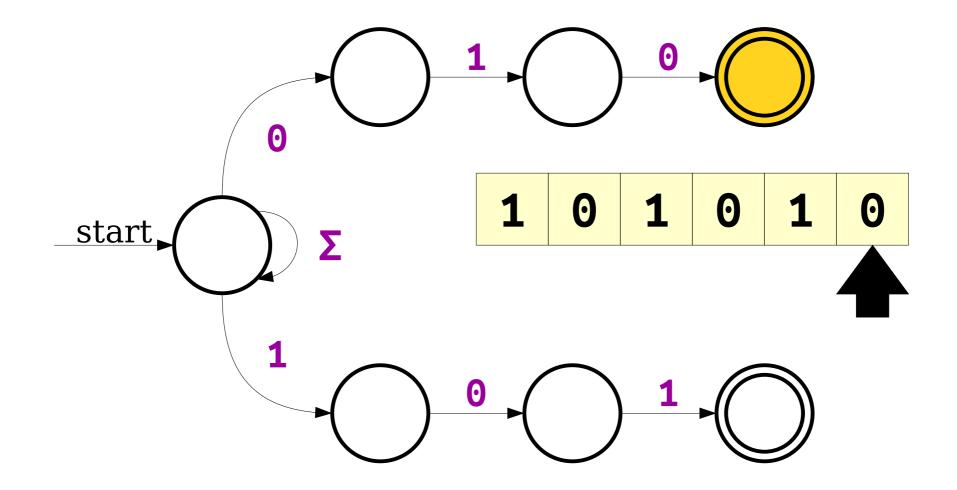


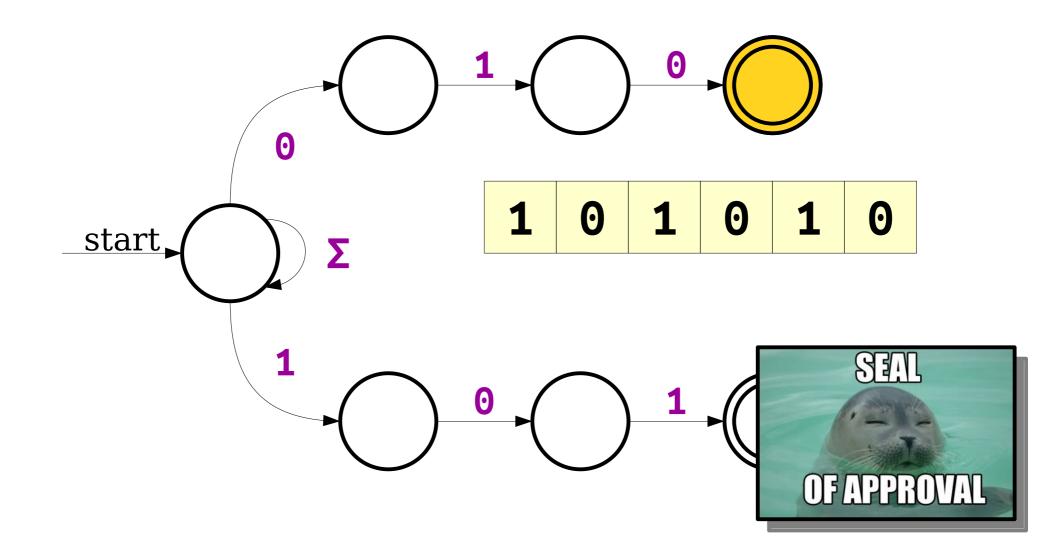


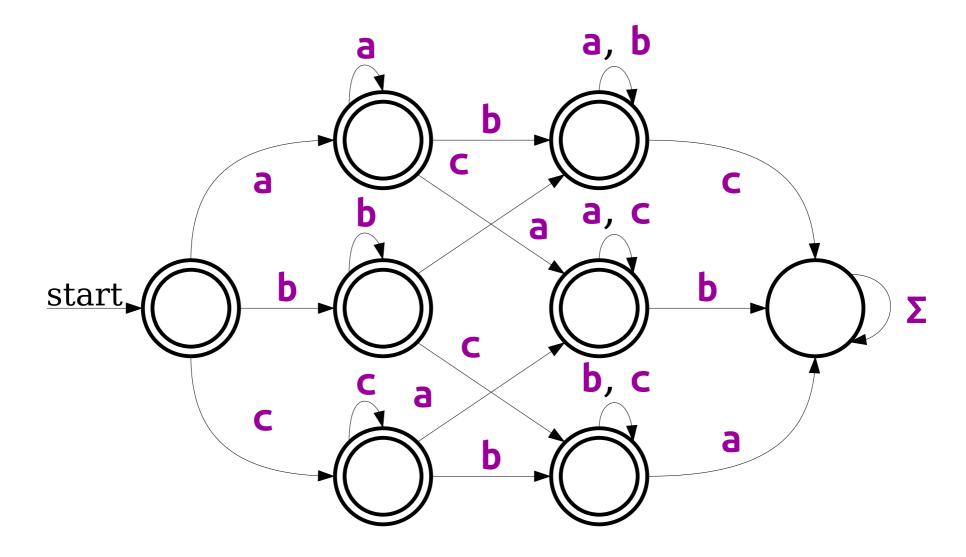




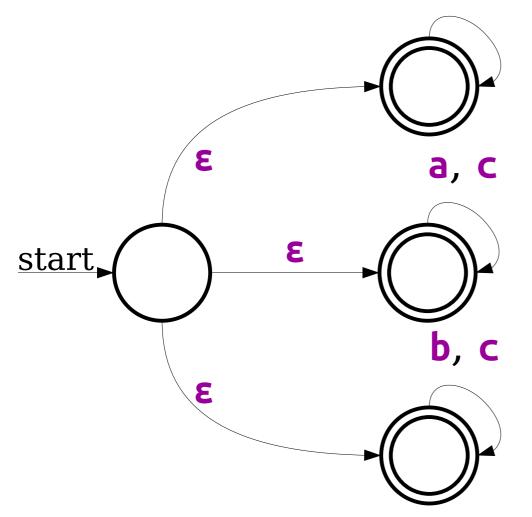






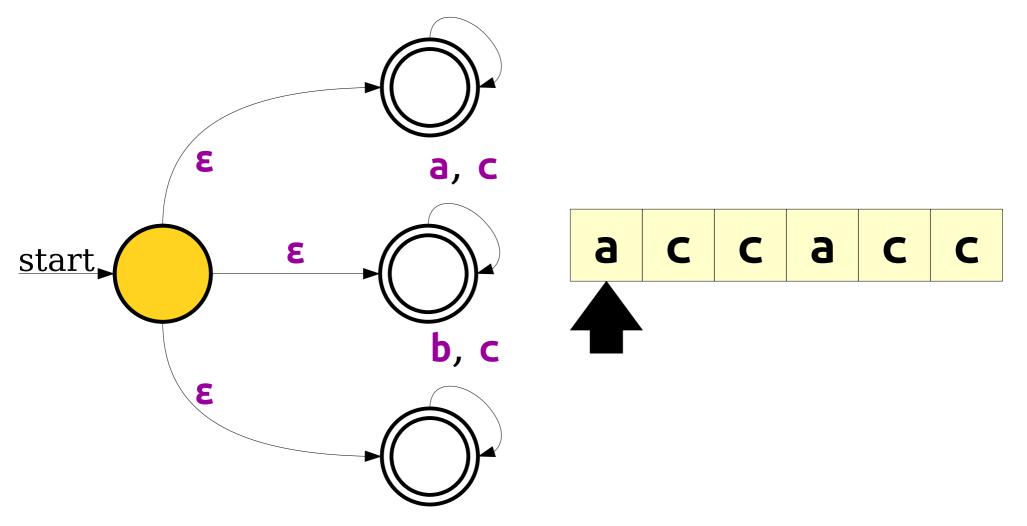


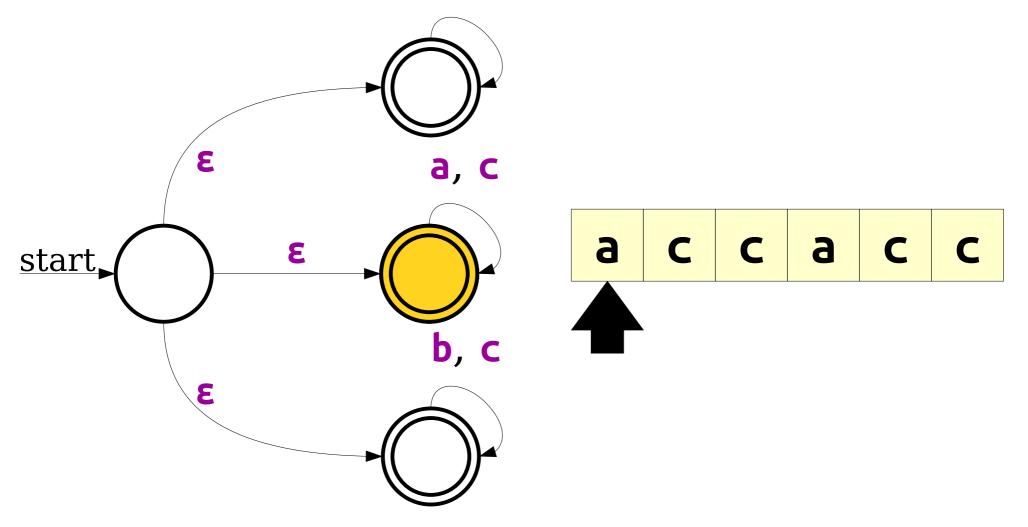
 $L = \{ w \in \{a, b, c\}^* | at least one of a, b, or c is not in w \}$ a, b

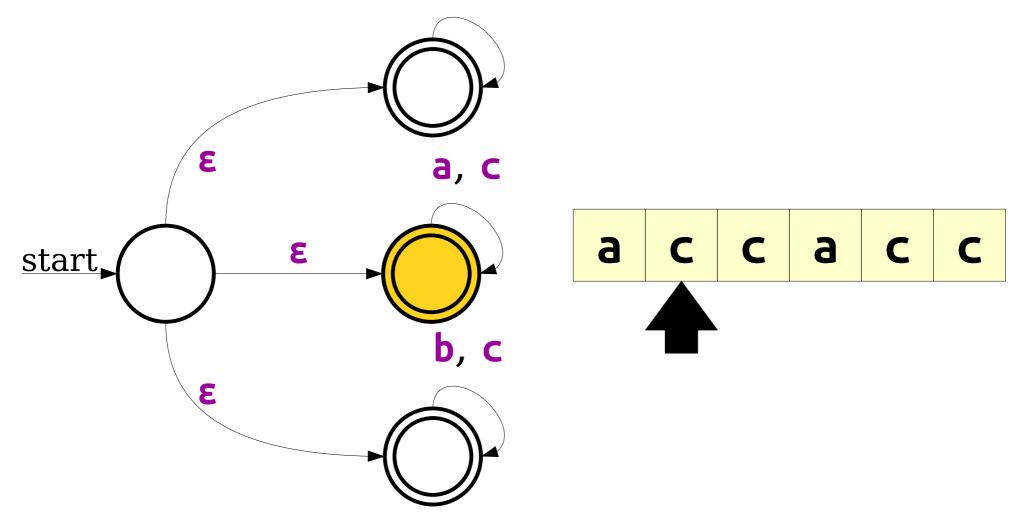


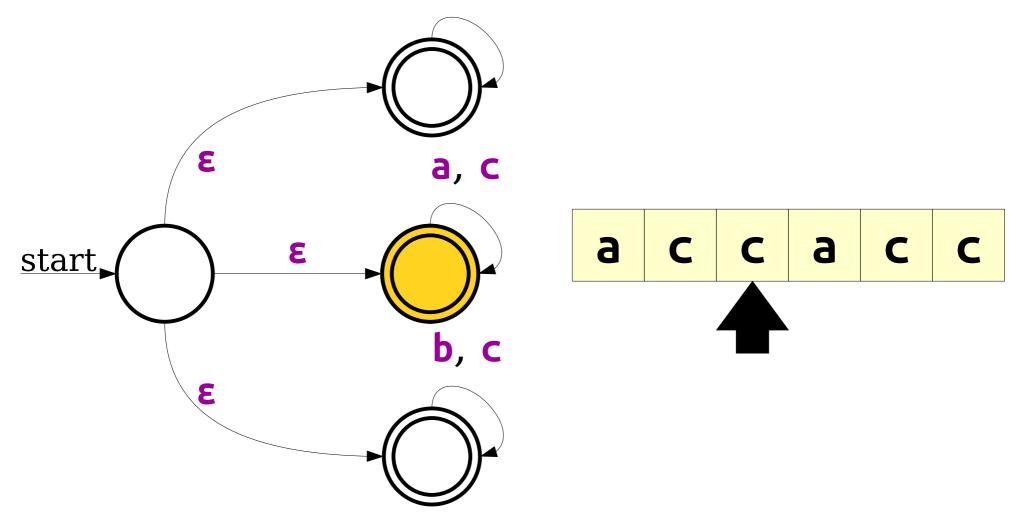
Nondeterministically guess which character is missing.

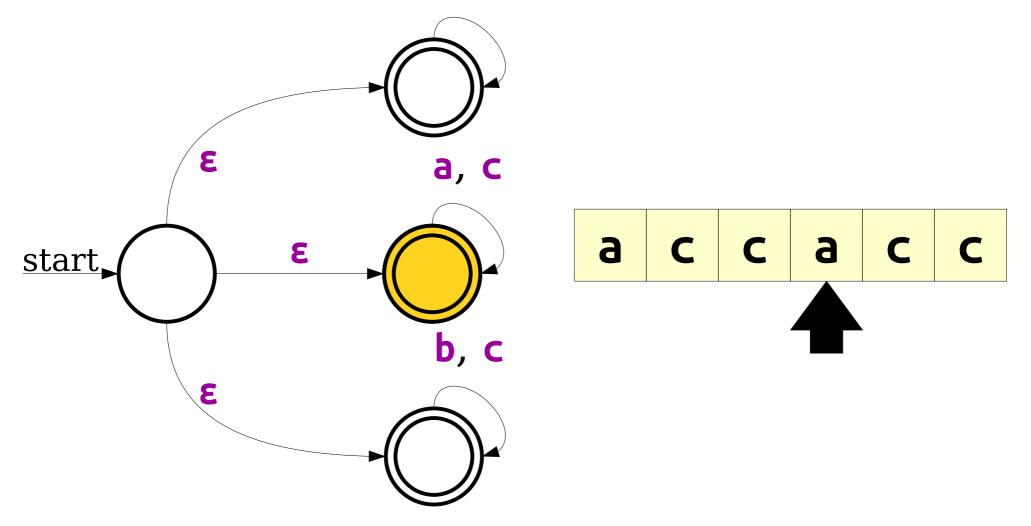
Deterministically *check* whether that character is indeed missing.

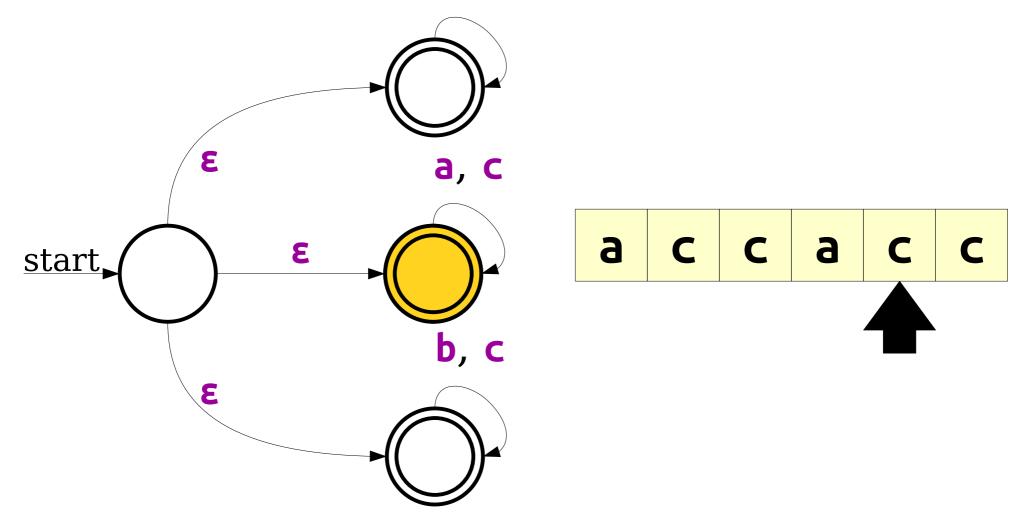


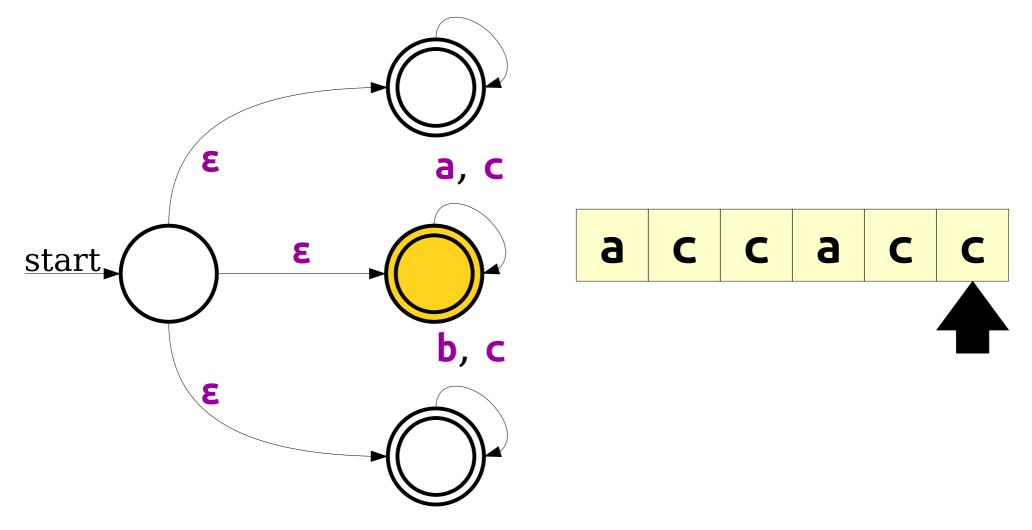


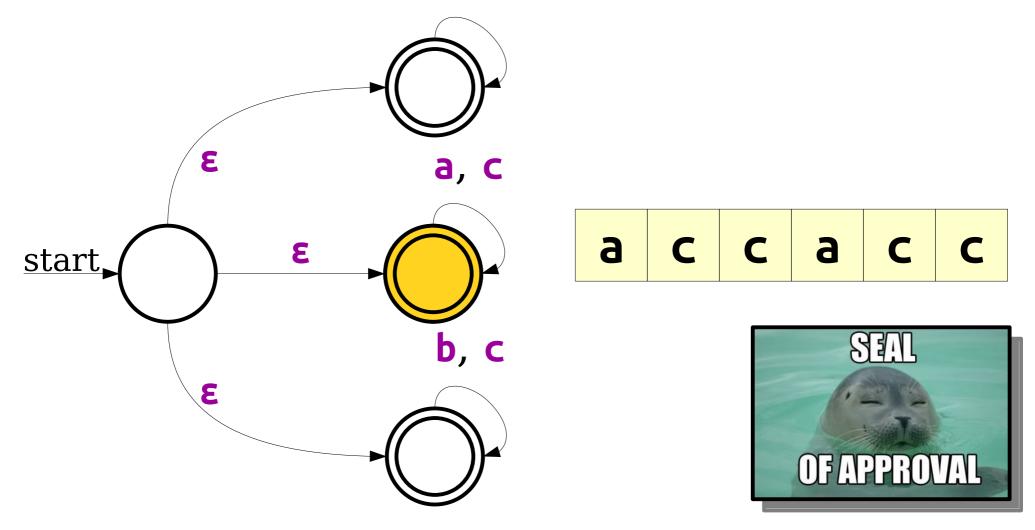












Just how powerful are NFAs?

Next Time

- The Subset Construction
 - So beautiful. So elegant. So cool!
- Closure Properties of Regular Languages
 - Transforming languages by transforming machines.
- The Kleene Closure
 - What's the deal with the notation Σ^* ?